Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (σω/ω/≤ 20%), and precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4 km s-1 and 20% of the stars with uncertainties smaller than 1 km s-1 on all three components). From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from ∼5 kpc to ∼13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars (r < 200 pc), with median velocity uncertainties of 0.4 km s-1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential.
Katz, D., Antoja, T., Romero-Gómez, M., Drimmel, R., Reylé, C., Seabroke, G., et al. (2018). Mapping the milky way disc kinematics. ASTRONOMY & ASTROPHYSICS, 616, 1-40 [10.1051/0004-6361/201832865].
Mapping the milky way disc kinematics
Katz, D.;Antoja, T.;Romero-Gómez, M.;Drimmel, R.;Reylé, C.;Seabroke, G. M.;Soubiran, C.;Babusiaux, C.;Di Matteo, P.;Figueras, F.;Poggio, E.;Robin, A. C.;Evans, D. W.;Brown, A. G. A.;Vallenari, A.;Prusti, T.;De Bruijne, J. H. J.;Bailer-Jones, C. A. L.;Biermann, M.;Eyer, L.;Jansen, F.;Jordi, C.;Klioner, S. A.;Lammers, U.;Lindegren, L.;Luri, X.;Mignard, F.;Panem, C.;Pourbaix, D.;Randich, S.;Sartoretti, P.;Siddiqui, H. I.;Van Leeuwen, F.;Walton, N. A.;Arenou, F.;Bastian, U.;Cropper, M.;Lattanzi, M. G.;Bakker, J.;Cacciari, C.;Castañeda, J.;Chaoul, L.;Cheek, N.;De Angeli, F.;Fabricius, C.;Guerra, R.;Holl, B.;Masana, E.;Messineo, R.;Mowlavi, N.;Nienartowicz, K.;Panuzzo, P.;Portell, J.;Riello, M.;Tanga, P.;Thévenin, F.;Gracia-Abril, G.;Comoretto, G.;Garcia-Reinaldos, M.;Teyssier, D.;Altmann, M.;Andrae, R.;Audard, M.;Bellas-Velidis, I.;Benson, K.;Berthier, J.;Blomme, R.;Burgess, P.;Busso, G.;Carry, B.;Cellino, A.;Clementini, G.;Clotet, M.;Creevey, O.;Davidson, M.;De Ridder, J.;Delchambre, L.;Dell'Oro, A.;Ducourant, C.;Fernández-Hernández, J.;Fouesneau, M.;Frémat, Y.;Galluccio, L.;García-Torres, M.;González-Núñez, J.;González-Vidal, J. J.;Gosset, E.;Guy, L. P.;Halbwachs, J. -L.;Hambly, N. C.;Harrison, D. L.;Hernández, J.;Hestroffer, D.;Hodgkin, S. T.;Hutton, A.;Jasniewicz, G.;Jean-Antoine-Piccolo, A.;Jordan, S.;Korn, A. J.;Krone-Martins, A.;Lanzafame, A. C.;Lebzelter, T.;Löffler, W.;Manteiga, M.;Marrese, P. M.;Martín-Fleitas, J. M.;Moitinho, A.;Mora, A.;Muinonen, K.;Osinde, J.;Pancino, E.;Pauwels, T.;Petit, J. -M.;Recio-Blanco, A.;Richards, P. J.;Rimoldini, L.;Sarro, L. M.;Siopis, C.;Smith, M.;Sozzetti, A.;Süveges, M.;Torra, J.;Van Reeven, W.;Abbas, U.;Abreu Aramburu, A.;Accart, S.;Aerts, C.;Altavilla, G.;Álvarez, M. A.;Alvarez, R.;Alves, J.;Anderson, R. I.;Andrei, A. H.;Anglada Varela, E.;Antiche, E.;Arcay, B.;Astraatmadja, T. L.;Bach, N.;Baker, S. G.;Balaguer-Núñez, L.;Balm, P.;Barache, C.;Barata, C.;Barbato, D.;Barblan, F.;Barklem, P. S.;Barrado, D.;Barros, M.;Barstow, M. A.;Bartholomé Muñoz, S.;Bassilana, J. -L.;Becciani, U.;Bellazzini, M.;Berihuete, A.;Bertone, S.;Bianchi, L.;Bienaymé, O.;Blanco-Cuaresma, S.;Boch, T.;Boeche, C.;Bombrun, A.;Borrachero, R.;Bossini, D.;Bouquillon, S.;Bourda, G.;Bragaglia, A.;Bramante, L.;Breddels, M. A.;Bressan, A.;Brouillet, N.;Brüsemeister, T.;Brugaletta, E.;Bucciarelli, B.;Burlacu, A.;Busonero, D.;Butkevich, A. G.;Buzzi, R.;Caffau, E.;Cancelliere, R.;Cannizzaro, G.;Cantat-Gaudin, T.;Carballo, R.;Carlucci, T.;Carrasco, J. M.;Casamiquela, L.;CASTELLANI, MARCO;Castro-Ginard, A.;Charlot, P.;Chemin, L.;Chiavassa, A.;Cocozza, G.;Costigan, G.;Cowell, S.;Crifo, F.;Crosta, M.;Crowley, C.;Cuypersy, J.;Dafonte, C.;Damerdji, Y.;Dapergolas, A.;David, P.;David, M.;De Laverny, P.;De Luise, F.;De March, R.;De Souza, R.;De Torres, A.;Debosscher, J.;Del Pozo, E.;Delbo, M.;Delgado, A.;Delgado, H. E.;Diakite, S.;Diener, C.;Distefano, E.;Dolding, C.;Drazinos, P.;Durán, J.;Edvardsson, B.;Enke, H.;Eriksson, K.;Esquej, P.;Eynard Bontemps, G.;Fabre, C.;Fabrizio, M.;Faigler, S.;Falcão, A. J.;Farràs Casas, M.;Federici, L.;Fedorets, G.;Fernique, P.;Filippi, F.;Findeisen, K.;Fonti, A.;Fraile, E.;Fraser, M.;Frézouls, B.;Gai, M.;Galleti, S.;Garabato, D.;García-Sedano, F.;Garofalo, A.;Garralda, N.;Gavel, A.;Gavras, P.;Gerssen, J.;Geyer, R.;Giacobbe, P.;Gilmore, G.;Girona, S.;Giuffrida, G.;Glass, F.;Gomes, M.;Granvik, M.;Gueguen, A.;Guerrier, A.;Guiraud, J.;Gutiérrez-Sánchez, R.;Haigron, R.;Hatzidimitriou, D.;Hauser, M.;Haywood, M.;Heiter, U.;Helmi, A.;Heu, J.;Hilger, T.;Hobbs, D.;Hofmann, W.;Holland, G.;Huckle, H. E.;Hypki, A.;Icardi, V.;Janßen, K.;De Fombelle, G. Jevardat;Jonker, P. G.;Juhász, Ã. L.;Julbe, F.;Karampelas, A.;Kewley, A.;Klar, J.;Kochoska, A.;Kohley, R.;Kolenberg, K.;Kontizas, M.;Kontizas, E.;Koposov, S. E.;Kordopatis, G.;Kostrzewa-Rutkowska, Z.;Koubsky, P.;Lambert, S.;Lanza, A. F.;Lasne, Y.;Lavigne, J. -B.;Le Fustec, Y.;Le Poncin-Lafitte, C.;Lebreton, Y.;Leccia, S.;Leclerc, N.;Lecoeur-Taibi, I.;Lenhardt, H.;Leroux, F.;Liao, S.;Licata, E.;Lindstrøm, H. E. P.;Lister, T. A.;Livanou, E.;Lobel, A.;López, M.;Managau, S.;Mann, R. G.;Mantelet, G.;Marchal, O.;Marchant, J. M.;Marconi, M.;Marinoni, S.;Marschalkó, G.;Marshall, D. J.;Martino, M.;Marton, G.;Mary, N.;Massari, D.;Matijević, G.;Mazeh, T.;McMillan, P. J.;Messina, S.;Michalik, D.;Millar, N. R.;Molina, D.;Molinaro, R.;Molnár, L.;Montegriffo, P.;Mor, R.;Morbidelli, R.;Morel, T.;Morris, D.;Mulone, A. F.;Muraveva, T.;Musella, I.;Nelemans, G.;Nicastro, L.;Noval, L.;O'Mullane, W.;Ordénovic, C.;Ordóñez-Blanco, D.;Osborne, P.;Pagani, C.;Pagano, I.;Pailler, F.;Palacin, H.;Palaversa, L.;Panahi, A.;Pawlak, M.;Piersimoni, A. M.;Pineau, F. -X.;Plachy, E.;Plum, G.;Poujoulet, E.;Prša, A.;Pulone, L.;Racero, E.;Ragaini, S.;Rambaux, N.;Ramos-Lerate, M.;Regibo, S.;Riclet, F.;Ripepi, V.;Riva, A.;Rivard, A.;Rixon, G.;Roegiers, T.;Roelens, M.;Rowell, N.;Royer, F.;Ruiz-Dern, L.;Sadowski, G.;Sagristà Sellés, T.;Sahlmann, J.;Salgado, J.;Salguero, E.;Sanna, N.;Santana-Ros, T.;Sarasso, M.;Savietto, H.;Schultheis, M.;Sciacca, E.;Segol, M.;Segovia, J. C.;Ségransan, D.;Shih, I. -C.;Siltala, L.;Silva, A. F.;Smart, R. L.;Smith, K. W.;Solano, E.;Solitro, F.;Sordo, R.;Soria Nieto, S.;Souchay, J.;Spagna, A.;Spoto, F.;Stampa, U.;Steele, I. A.;Steidelmüller, H.;Stephenson, C. A.;Stoev, H.;Suess, F. F.;Surdej, J.;Szabados, L.;Szegedi-Elek, E.;Tapiador, D.;Taris, F.;Tauran, G.;Taylor, M. B.;Teixeira, R.;Terrett, D.;Teyssandier, P.;Thuillot, W.;Titarenko, A.;Torra Clotet, F.;Turon, C.;Ulla, A.;Utrilla, E.;Uzzi, S.;Vaillant, M.;Valentini, G.;Valette, V.;Van Elteren, A.;Van Hemelryck, E.;Van Leeuwen, M.;Vaschetto, M.;Vecchiato, A.;Veljanoski, J.;Viala, Y.;Vicente, D.;Vogt, S.;Von Essen, C.;Voss, H.;Votruba, V.;Voutsinas, S.;Walmsley, G.;Weiler, M.;Wertz, O.;Wevers, T.;Wyrzykowski, Å.;Yoldas, A.;Žerjal, M.;Ziaeepour, H.;Zorec, J.;Zschocke, S.;Zucker, S.;Zurbach, C.;Zwitter, T.
2018
Abstract
Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (σω/ω/≤ 20%), and precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4 km s-1 and 20% of the stars with uncertainties smaller than 1 km s-1 on all three components). From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from ∼5 kpc to ∼13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars (r < 200 pc), with median velocity uncertainties of 0.4 km s-1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential.
Katz, D., Antoja, T., Romero-Gómez, M., Drimmel, R., Reylé, C., Seabroke, G., et al. (2018). Mapping the milky way disc kinematics. ASTRONOMY & ASTROPHYSICS, 616, 1-40 [10.1051/0004-6361/201832865].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/660099
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
228
143
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.