This paper presents a vibration-based model updating procedure for historical masonry structures which have suffered severe damage due to seismic events. This allows gathering in-depth insights on the current condition of damaged buildings, which can be beneficial for the knowledge of their actual structural behaviour and, consequently, for the design of repairing and strengthening interventions. The methodology, based on the experimentally identified modal parameters, is tested on the San Felice sul Panaro medieval fortress, which was heavily damaged by the 2012 Emilia earthquake. The finite element mesh of the structure in its post-quake condition is generated by means of a nonstandard semi-automatic mesh generation procedure based on a laser scanner points cloud. Ambient vibration testing is performed on the main tower of the fortress. Mechanical properties of the tower and the level of connections with the rest of the fortress in its current damaged state are investigated. To fully characterize the actual behaviour of the tower in operational condition, mesh elements corresponding to the damaged masonry are identified and different material properties are assigned to them. This allows to account for the effect of damage and cracks, which appeared essential in the calibration process. The updating procedure is carried out by means of an advanced surrogate-assisted evolutionary algorithm designed for reducing the computational effort.

Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower / Bassoli, Elisa*; Vincenzi, Loris; D'Altri, Antonio Maria; de Miranda, Stefano; Forghieri, Marianna; Castellazzi, Giovanni. - In: STRUCTURAL CONTROL & HEALTH MONITORING. - ISSN 1545-2255. - ELETTRONICO. - 25:5(2018), pp. e2150.1-e2150.15. [10.1002/stc.2150]

Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower

D'Altri, Antonio Maria;de Miranda, Stefano;Castellazzi, Giovanni
2018

Abstract

This paper presents a vibration-based model updating procedure for historical masonry structures which have suffered severe damage due to seismic events. This allows gathering in-depth insights on the current condition of damaged buildings, which can be beneficial for the knowledge of their actual structural behaviour and, consequently, for the design of repairing and strengthening interventions. The methodology, based on the experimentally identified modal parameters, is tested on the San Felice sul Panaro medieval fortress, which was heavily damaged by the 2012 Emilia earthquake. The finite element mesh of the structure in its post-quake condition is generated by means of a nonstandard semi-automatic mesh generation procedure based on a laser scanner points cloud. Ambient vibration testing is performed on the main tower of the fortress. Mechanical properties of the tower and the level of connections with the rest of the fortress in its current damaged state are investigated. To fully characterize the actual behaviour of the tower in operational condition, mesh elements corresponding to the damaged masonry are identified and different material properties are assigned to them. This allows to account for the effect of damage and cracks, which appeared essential in the calibration process. The updating procedure is carried out by means of an advanced surrogate-assisted evolutionary algorithm designed for reducing the computational effort.
2018
Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower / Bassoli, Elisa*; Vincenzi, Loris; D'Altri, Antonio Maria; de Miranda, Stefano; Forghieri, Marianna; Castellazzi, Giovanni. - In: STRUCTURAL CONTROL & HEALTH MONITORING. - ISSN 1545-2255. - ELETTRONICO. - 25:5(2018), pp. e2150.1-e2150.15. [10.1002/stc.2150]
Bassoli, Elisa*; Vincenzi, Loris; D'Altri, Antonio Maria; de Miranda, Stefano; Forghieri, Marianna; Castellazzi, Giovanni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/660014
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 59
social impact