Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
Context. The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain. A subset of these quasars have accurate VLBI positions that allow the axes of the reference frame to be aligned with the International Celestial Reference System (ICRF) radio frame. Aims. We describe the astrometric and photometric properties of the quasars that were selected to represent the celestial reference frame of Gaia DR2 (Gaia-CRF2), and to compare the optical and radio positions for sources with accurate VLBI positions. Methods. Descriptive statistics are used to characterise the overall properties of the quasar sample. Residual rotation and orientation errors and large-scale systematics are quantified by means of expansions in vector spherical harmonics. Positional differences are calculated relative to a prototype version of the forthcoming ICRF3. Results. Gaia-CRF2 consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G ≈ 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = mag. Large-scale systematics are estimated to be in the range 20 to 30 μas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions. Conclusions. Based on less than 40% of the data expected from the nominal Gaia mission, Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. Its accuracy matches the current radio frame of the ICRF, but the density of sources in all parts of the sky is much higher, except along the Galactic equator.
Mignard, F., Klioner, S., Lindegren, L., Hernández, J., Bastian, U., Bombrun, A., et al. (2018). Gaia Data Release 2: The celestial reference frame (Gaia -CRF2). ASTRONOMY & ASTROPHYSICS, 616, 1-16 [10.1051/0004-6361/201832916].
Gaia Data Release 2: The celestial reference frame (Gaia -CRF2)
Mignard, F.;Klioner, S. A.;Lindegren, L.;Hernández, J.;Bastian, U.;Bombrun, A.;Hobbs, D.;Lammers, U.;Michalik, D.;Ramos-Lerate, M.;Biermann, M.;Fernández-Hernández, J.;Geyer, R.;Hilger, T.;Siddiqui, H. I.;Steidelmüller, H.;Babusiaux, C.;Barache, C.;Lambert, S.;Andrei, A. H.;Bourda, G.;Charlot, P.;Brown, A. G. A.;Vallenari, A.;Prusti, T.;De Bruijne, J. H. J.;Bailer-Jones, C. A. L.;Evans, D. W.;Eyer, L.;Jansen, F.;Jordi, C.;Luri, X.;Panem, C.;Pourbaix, D.;Randich, S.;Sartoretti, P.;Soubiran, C.;Van Leeuwen, F.;Walton, N. A.;Arenou, F.;Cropper, M.;Drimmel, R.;Katz, D.;LATTANZI, MARIO GILBERTO;Bakker, J.;CACCIARI, CARLA;Castañeda, J.;Chaoul, L.;Cheek, N.;De Angeli, F.;Fabricius, C.;Guerra, R.;Holl, B.;Masana, E.;Messineo, R.;Mowlavi, N.;Nienartowicz, K.;Panuzzo, P.;Portell, J.;Riello, M.;Seabroke, G. M.;Tanga, P.;Thévenin, F.;Gracia-Abril, G.;Comoretto, G.;Garcia-Reinaldos, M.;Teyssier, D.;Altmann, M.;Andrae, R.;Audard, M.;Bellas-Velidis, I.;Benson, K.;Berthier, J.;Blomme, R.;BURGESS, CLIFFORD PETER;Busso, G.;Carry, B.;Cellino, A.;Clementini, G.;Clotet, M.;Creevey, O.;Davidson, M.;De Ridder, J.;Delchambre, L.;Dell'Oro, A.;Ducourant, C.;Fouesneau, M.;Frémat, Y.;Galluccio, L.;García-Torres, M.;González-Núñez, J.;González-Vidal, J. J.;Gosset, E.;Guy, L. P.;Halbwachs, J. -L.;Hambly, N. C.;Harrison, D. L.;Hestroffer, D.;Hodgkin, S. T.;Hutton, A.;Jasniewicz, G.;Jean-Antoine-Piccolo, A.;Jordan, S.;Korn, A. J.;Krone-Martins, A.;Lanzafame, A. C.;Lebzelter, T.;Löffler, W.;Manteiga, M.;Marrese, P. M.;Martín-Fleitas, J. M.;Moitinho, A.;MORA, ARTURO;Muinonen, K.;Osinde, J.;PANCINO, ELENA;Pauwels, T.;Petit, J. -M.;Recio-Blanco, A.;Richards, P. J.;Rimoldini, L.;Robin, A. C.;Sarro, L. M.;Siopis, C.;Smith, M.;Sozzetti, A.;Süveges, M.;Torra, J.;Van Reeven, W.;Abbas, U.;Abreu Aramburu, A.;Accart, S.;Aerts, C.;Altavilla, G.;Álvarez, M. A.;Alvarez, R.;Alves, J.;Anderson, R. I.;Anglada Varela, E.;Antiche, E.;Antoja, T.;Arcay, B.;Astraatmadja, T. L.;Bach, N.;Baker, S. G.;Balaguer-Núñez, L.;Balm, P.;Barata, C.;Barbato, D.;Barblan, F.;Barklem, P. S.;Barrado, D.;MURIAS DOS SANTOS AIRES BARROS, MARIA RAQUEL;Barstow, M. A.;Bartholomé Muñoz, S.;Bassilana, J. -L.;Becciani, U.;BELLAZZINI, MICHELE;Berihuete, A.;Bertone, S.;Bianchi, L.;Bienaymé, O.;Blanco-Cuaresma, S.;Boch, T.;Boeche, C.;Borrachero, R.;Bossini, D.;Bouquillon, S.;Bragaglia, A.;Bramante, L.;Breddels, M. A.;BRESSAN, ALESSANDRO;Brouillet, N.;Brüsemeister, T.;Brugaletta, E.;Bucciarelli, B.;Burlacu, A.;Busonero, D.;Butkevich, A. G.;Buzzi, R.;Caffau, E.;Cancelliere, R.;Cannizzaro, G.;Cantat-Gaudin, T.;Carballo, R.;Carlucci, T.;Carrasco, J. M.;Casamiquela, L.;Castellani, M.;Castro-Ginard, A.;Chemin, L.;Chiavassa, A.;Cocozza, G.;Costigan, G.;Cowell, S.;Crifo, F.;Crosta, M.;Crowley, C.;Cuypers, J.;Dafonte, C.;Damerdji, Y.;Dapergolas, A.;David, P.;David, M.;De Laverny, P.;De Luise, F.;De March, R.;FERREIRA DE SOUZA, RENATO;De Torres, A.;Debosscher, J.;Del Pozo, E.;Delbo, M.;Delgado, A.;Delgado, H. E.;DIakite, S.;DIener, C.;DISTEFANO, ENRICA;Dolding, C.;Drazinos, P.;Durán, J.;Edvardsson, B.;Enke, H.;Eriksson, K.;Esquej, P.;Eynard Bontemps, G.;Fabre, C.;Fabrizio, M.;Faigler, S.;Falcão, A. J.;Farràs Casas, M.;Federici, L.;Fedorets, G.;Fernique, P.;Figueras, F.;Filippi, F.;Findeisen, K.;Fonti, A.;Fraile, E.;Fraser, M.;Frézouls, B.;Gai, M.;GALLETI, SILVIA;Garabato, D.;García-Sedano, F.;Garofalo, A.;Garralda, N.;Gavel, A.;Gavras, P.;Gerssen, J.;Giacobbe, P.;Gilmore, G.;Girona, S.;Giuffrida, G.;Glass, F.;Gomes, M.;Granvik, M.;Gueguen, A.;Guerrier, A.;Guiraud, J.;Gutiérrez-Sánchez, R.;Haigron, R.;Hatzidimitriou, D.;Hauser, M.;Haywood, M.;Heiter, U.;Helmi, A.;Heu, J.;Hofmann, W.;Holland, G.;Huckle, H. E.;Hypki, A.;Icardi, V.;Janßen, K.;Jevardat De Fombelle, G.;Jonker, P. G.;Juhász, A. L.;Julbe, F.;Karampelas, A.;Kewley, A.;Klar, J.;Kochoska, A.;Kohley, R.;Kolenberg, K.;Kontizas, M.;Kontizas, E.;Koposov, S. E.;Kordopatis, G.;Kostrzewa-Rutkowska, Z.;Koubsky, P.;Lanza, A. F.;Lasne, Y.;Lavigne, J. -B.;Le Fustec, Y.;Le Poncin-Lafitte, C.;Lebreton, Y.;Leccia, S.;Leclerc, N.;Lecoeur-Taibi, I.;Lenhardt, H.;Leroux, F.;Liao, S.;Licata, E.;Lindstrøm, H. E. P.;Lister, T. A.;Livanou, E.;Lobel, A.;López, M.;Managau, S.;Mann, R. G.;Mantelet, G.;Marchal, O.;Marchant, J. M.;Marconi, M.;MARINONI, SILVIA;Marschalkó, G.;Marshall, D. J.;Martino, M.;Marton, G.;Mary, N.;Massari, D.;Matijevič, G.;Mazeh, T.;McMillan, P. J.;Messina, S.;Millar, N. R.;Molina, D.;Molinaro, R.;Molnár, L.;Montegriffo, P.;Mor, R.;Morbidelli, R.;Morel, T.;Morris, D.;Mulone, A. F.;Muraveva, T.;Musella, I.;Nelemans, G.;Nicastro, L.;Noval, L.;O'Mullane, W.;Ordénovic, C.;Ordóñez-Blanco, D.;Osborne, P.;Pagani, C.;Pagano, I.;Pailler, F.;Palacin, H.;Palaversa, L.;Panahi, A.;Pawlak, M.;Piersimoni, A. M.;Pineau, F. -X.;Plachy, E.;Plum, G.;Poggio, E.;Poujoulet, E.;Prša, A.;Pulone, L.;Racero, E.;Ragaini, S.;Rambaux, N.;Regibo, S.;Reylé, C.;Riclet, F.;Ripepi, V.;Riva, A.;Rivard, A.;Rixon, G.;Roegiers, T.;Roelens, M.;Romero-Gómez, M.;Rowell, N.;Royer, F.;Ruiz-Dern, L.;Sadowski, G.;Sagristà Sellés, T.;Sahlmann, J.;Salgado, J.;Salguero, E.;Sanna, N.;Santana-Ros, T.;Sarasso, M.;Savietto, H.;Schultheis, M.;Sciacca, E.;Segol, M.;Segovia, J. C.;Ségransan, D.;Shih, I. -C.;Siltala, L.;Silva, A. F.;Smart, R. L.;Smith, K. W.;Solano, E.;Solitro, F.;Sordo, R.;Soria Nieto, S.;Souchay, J.;Spagna, A.;Spoto, F.;Stampa, U.;Steele, I. A.;Stephenson, C. A.;Stoev, H.;Suess, F. F.;Surdej, J.;Szabados, L.;Szegedi-Elek, E.;Tapiador, D.;Taris, F.;Tauran, G.;Taylor, M. B.;Teixeira, R.;Terrett, D.;Teyssandier, P.;Thuillot, W.;Titarenko, A.;Torra Clotet, F.;Turon, C.;Ulla, A.;Utrilla, E.;Uzzi, S.;Vaillant, M.;Valentini, G.;Valette, V.;Van Elteren, A.;Van Hemelryck, E.;Van Leeuwen, M.;Vaschetto, M.;Vecchiato, A.;Veljanoski, J.;Viala, Y.;Vicente, D.;Vogt, S.;Von Essen, C.;Voss, H.;Votruba, V.;Voutsinas, S.;Walmsley, G.;Weiler, M.;Wertz, O.;Wevers, T.;Wyrzykowski, L.;Yoldas, A.;Žerjal, M.;Ziaeepour, H.;Zorec, J.;Zschocke, S.;Zucker, S.;Zurbach, C.;Zwitter, T.
2018
Abstract
Context. The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain. A subset of these quasars have accurate VLBI positions that allow the axes of the reference frame to be aligned with the International Celestial Reference System (ICRF) radio frame. Aims. We describe the astrometric and photometric properties of the quasars that were selected to represent the celestial reference frame of Gaia DR2 (Gaia-CRF2), and to compare the optical and radio positions for sources with accurate VLBI positions. Methods. Descriptive statistics are used to characterise the overall properties of the quasar sample. Residual rotation and orientation errors and large-scale systematics are quantified by means of expansions in vector spherical harmonics. Positional differences are calculated relative to a prototype version of the forthcoming ICRF3. Results. Gaia-CRF2 consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G ≈ 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = mag. Large-scale systematics are estimated to be in the range 20 to 30 μas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions. Conclusions. Based on less than 40% of the data expected from the nominal Gaia mission, Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. Its accuracy matches the current radio frame of the ICRF, but the density of sources in all parts of the sky is much higher, except along the Galactic equator.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/659990
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
141
122
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.