Increasing environmental demands, alongside the planned penetration of natural gas as marine fuel, have rendered dual-fuel engines as an attractive prime mover alternative. In this context, knowing the specific fuel consumption is essential to selecting the most efficient engine. The specific fuel consumption can be approached by simulation models with varying levels of complexity that are either implemented by basic programming languages or simulated by dedicated packages. This study aims to develop a simplified model to predict the specific fuel consumption of dual-fuel two-stroke marine engines driving fixed or controllable pitch propellers. The model relies on clear trends approachable by polynomials that were revealed by normalizing specific fuel consumption. This model requires only the value of specific fuel consumption at a nominal maximum continuous rating to predict the engine consumption at any specified rating, including at partial engine load. The outcome of the study shows that the maximum deviations regarding the two simulated engines did not exceed −3.6%. In summary, the proposed model is a fast and effective tool for optimizing the selection of dual-fuel, two-stroke Diesel engines regarding fuel consumption.

An Approach for Predicting the Specific Fuel Consumption of Dual-Fuel Two-Stroke Marine Engines / Marques, Crístofer; Caprace, Jean-D.; Belchior, Carlos; Martini, Alberto. - In: JOURNAL OF MARINE SCIENCE AND ENGINEERING. - ISSN 2077-1312. - ELETTRONICO. - 7:2(2019), pp. 20.1-20.12. [10.3390/jmse7020020]

An Approach for Predicting the Specific Fuel Consumption of Dual-Fuel Two-Stroke Marine Engines

Martini, Alberto
2019

Abstract

Increasing environmental demands, alongside the planned penetration of natural gas as marine fuel, have rendered dual-fuel engines as an attractive prime mover alternative. In this context, knowing the specific fuel consumption is essential to selecting the most efficient engine. The specific fuel consumption can be approached by simulation models with varying levels of complexity that are either implemented by basic programming languages or simulated by dedicated packages. This study aims to develop a simplified model to predict the specific fuel consumption of dual-fuel two-stroke marine engines driving fixed or controllable pitch propellers. The model relies on clear trends approachable by polynomials that were revealed by normalizing specific fuel consumption. This model requires only the value of specific fuel consumption at a nominal maximum continuous rating to predict the engine consumption at any specified rating, including at partial engine load. The outcome of the study shows that the maximum deviations regarding the two simulated engines did not exceed −3.6%. In summary, the proposed model is a fast and effective tool for optimizing the selection of dual-fuel, two-stroke Diesel engines regarding fuel consumption.
2019
An Approach for Predicting the Specific Fuel Consumption of Dual-Fuel Two-Stroke Marine Engines / Marques, Crístofer; Caprace, Jean-D.; Belchior, Carlos; Martini, Alberto. - In: JOURNAL OF MARINE SCIENCE AND ENGINEERING. - ISSN 2077-1312. - ELETTRONICO. - 7:2(2019), pp. 20.1-20.12. [10.3390/jmse7020020]
Marques, Crístofer; Caprace, Jean-D.; Belchior, Carlos; Martini, Alberto
File in questo prodotto:
File Dimensione Formato  
jmse-07-00020-v2(1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 474.57 kB
Formato Adobe PDF
474.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/657646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact