We consider integer optimization problems where variables can potentially take fractional values, but this occurrence is penalized in the objective function. This general situation has relevant examples in scheduling (preemption), routing (split delivery), cutting and telecommunications, just to mention a few. However, the general case in which variables integrality can be relaxed at cost of introducing a general penalty was not discussed before. As a case study, we consider the possibly simplest combinatorial optimization problem, namely the classical Knapsack Problem. We introduce the Fractional Knapsack Problem with Penalties (FKPP), a variant of the knapsack problem in which items can be split at the expense of a penalty depending on the fractional quantity. We analyze relevant properties of the problem, present alternative mathematical models, and analyze their performance from a theoretical viewpoint. In addition, we introduce a Fully Polynomial Time Approximation Scheme for the approximate solution of the general problem, and an improved dynamic programming approach that computes the optimal solution in one relevant case. We computationally test the proposed models and algorithms on a large set of instances derived from benchmarks from the literature.

Integer optimization with penalized fractional values: The Knapsack case / Malaguti, Enrico; Monaci, Michele*; Paronuzzi, Paolo; Pferschy, Ulrich. - In: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH. - ISSN 0377-2217. - STAMPA. - 273:3(2019), pp. S0377221718307963.874-S0377221718307963.888. [10.1016/j.ejor.2018.09.020]

Integer optimization with penalized fractional values: The Knapsack case

Malaguti, Enrico;Monaci, Michele
;
Paronuzzi, Paolo;
2019

Abstract

We consider integer optimization problems where variables can potentially take fractional values, but this occurrence is penalized in the objective function. This general situation has relevant examples in scheduling (preemption), routing (split delivery), cutting and telecommunications, just to mention a few. However, the general case in which variables integrality can be relaxed at cost of introducing a general penalty was not discussed before. As a case study, we consider the possibly simplest combinatorial optimization problem, namely the classical Knapsack Problem. We introduce the Fractional Knapsack Problem with Penalties (FKPP), a variant of the knapsack problem in which items can be split at the expense of a penalty depending on the fractional quantity. We analyze relevant properties of the problem, present alternative mathematical models, and analyze their performance from a theoretical viewpoint. In addition, we introduce a Fully Polynomial Time Approximation Scheme for the approximate solution of the general problem, and an improved dynamic programming approach that computes the optimal solution in one relevant case. We computationally test the proposed models and algorithms on a large set of instances derived from benchmarks from the literature.
2019
Integer optimization with penalized fractional values: The Knapsack case / Malaguti, Enrico; Monaci, Michele*; Paronuzzi, Paolo; Pferschy, Ulrich. - In: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH. - ISSN 0377-2217. - STAMPA. - 273:3(2019), pp. S0377221718307963.874-S0377221718307963.888. [10.1016/j.ejor.2018.09.020]
Malaguti, Enrico; Monaci, Michele*; Paronuzzi, Paolo; Pferschy, Ulrich
File in questo prodotto:
File Dimensione Formato  
PP Integer Optimization with Penalized Fractional.pdf

Open Access dal 23/09/2020

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 819.02 kB
Formato Adobe PDF
819.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/657029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact