Sustainable technologies require both renewable feedstocks and catalysts that are able to direct their conversion to specific products. We establish a structure-activity relationship for the aqueous phase reforming of glycerol over 2% Pt/Al2O3 catalysts, whereby the reaction pathway can be controlled to produce either hydrogen or 1,2-propanediol as the main product. Using the colloidal synthesis method, the reduction temperature was altered to produce Pt nanoparticle catalysts supported on Al2O3 with varying Pt particle size. The catalytic activity of the samples for the APR of glycerol resulted in a higher conversion of glycerol (34%) for the larger Pt particle size of ∼3.5 nm, producing the liquid 1,2-propanediol as the major product with a yield of 12.5%, whereas smaller particles of ∼2.2 nm gave hydrogen as the main product (5.5% yield). This work demonstrates how the APR of glycerol can be tuned to yield both valuable liquid and gas products using tailored Pt nanoparticles.

Callison, J., Subramanian, N., Rogers, S., Chutia, A., Gianolio, D., Catlow, C., et al. (2018). Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles. APPLIED CATALYSIS. B, ENVIRONMENTAL, 238, 618-628 [10.1016/j.apcatb.2018.07.008].

Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles

Dimitratos, N.
2018

Abstract

Sustainable technologies require both renewable feedstocks and catalysts that are able to direct their conversion to specific products. We establish a structure-activity relationship for the aqueous phase reforming of glycerol over 2% Pt/Al2O3 catalysts, whereby the reaction pathway can be controlled to produce either hydrogen or 1,2-propanediol as the main product. Using the colloidal synthesis method, the reduction temperature was altered to produce Pt nanoparticle catalysts supported on Al2O3 with varying Pt particle size. The catalytic activity of the samples for the APR of glycerol resulted in a higher conversion of glycerol (34%) for the larger Pt particle size of ∼3.5 nm, producing the liquid 1,2-propanediol as the major product with a yield of 12.5%, whereas smaller particles of ∼2.2 nm gave hydrogen as the main product (5.5% yield). This work demonstrates how the APR of glycerol can be tuned to yield both valuable liquid and gas products using tailored Pt nanoparticles.
2018
Callison, J., Subramanian, N., Rogers, S., Chutia, A., Gianolio, D., Catlow, C., et al. (2018). Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles. APPLIED CATALYSIS. B, ENVIRONMENTAL, 238, 618-628 [10.1016/j.apcatb.2018.07.008].
Callison, J.; Subramanian, N.D.; Rogers, S.M.; Chutia, A.; Gianolio, D.; Catlow, C.R.A.; Wells, P.P.; Dimitratos, N.*
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/656004
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 60
social impact