In this paper we study the Palais–Smale sequences of the conformal Dirac–Einstein problem. After we characterize the bubbling phenomena, we prove an Aubin type result leading to the existence of a positive solution. Then we show the existence of infinitely many solutions to the problem provided that the underlying manifold exhibits certain symmetries.

Maalaoui, A., Martino, V. (2019). Characterization of the Palais–Smale sequences for the conformal Dirac–Einstein problem and applications. JOURNAL OF DIFFERENTIAL EQUATIONS, 266(5), 2493-2541 [10.1016/j.jde.2018.08.037].

Characterization of the Palais–Smale sequences for the conformal Dirac–Einstein problem and applications

Maalaoui, Ali;Martino, Vittorio
2019

Abstract

In this paper we study the Palais–Smale sequences of the conformal Dirac–Einstein problem. After we characterize the bubbling phenomena, we prove an Aubin type result leading to the existence of a positive solution. Then we show the existence of infinitely many solutions to the problem provided that the underlying manifold exhibits certain symmetries.
2019
Maalaoui, A., Martino, V. (2019). Characterization of the Palais–Smale sequences for the conformal Dirac–Einstein problem and applications. JOURNAL OF DIFFERENTIAL EQUATIONS, 266(5), 2493-2541 [10.1016/j.jde.2018.08.037].
Maalaoui, Ali; Martino, Vittorio*
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/655162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact