We study a stochastic optimal control problem for a partially observed diffusion. By using the control randomization method in Bandini et al. (2018), we prove a corresponding randomized dynamic programming principle (DPP) for the value function, which is obtained from a flow property of an associated filter process. This DPP is the key step towards our main result: a characterization of the value function of the partial observation control problem as the unique viscosity solution to the corresponding dynamic programming Hamilton–Jacobi–Bellman (HJB) equation. The latter is formulated as a new, fully non linear partial differential equation on the Wasserstein space of probability measures. An important feature of our approach is that it does not require any non-degeneracy condition on the diffusion coefficient, and no condition is imposed to guarantee existence of a density for the filter process solution to the controlled Zakai equation. Finally, we give an explicit solution to our HJB equation in the case of a partially observed non Gaussian linear–quadratic model.

Bandini, E., Cosso, A., Fuhrman, M., Pham, H. (2019). Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 129(2), 674-711 [10.1016/j.spa.2018.03.014].

Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem

Bandini, Elena;Cosso, Andrea;
2019

Abstract

We study a stochastic optimal control problem for a partially observed diffusion. By using the control randomization method in Bandini et al. (2018), we prove a corresponding randomized dynamic programming principle (DPP) for the value function, which is obtained from a flow property of an associated filter process. This DPP is the key step towards our main result: a characterization of the value function of the partial observation control problem as the unique viscosity solution to the corresponding dynamic programming Hamilton–Jacobi–Bellman (HJB) equation. The latter is formulated as a new, fully non linear partial differential equation on the Wasserstein space of probability measures. An important feature of our approach is that it does not require any non-degeneracy condition on the diffusion coefficient, and no condition is imposed to guarantee existence of a density for the filter process solution to the controlled Zakai equation. Finally, we give an explicit solution to our HJB equation in the case of a partially observed non Gaussian linear–quadratic model.
2019
Bandini, E., Cosso, A., Fuhrman, M., Pham, H. (2019). Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 129(2), 674-711 [10.1016/j.spa.2018.03.014].
Bandini, Elena; Cosso, Andrea; Fuhrman, Marco; Pham, Huyên
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/654060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact