Thermally activated delayed fluorescence (TADF) offers promise for all-organic light-emitting diodes with quantum efficiencies competing with those of transition-metal-based phosphorescent devices. While computational efforts have so far largely focused on gas-phase calculations of singlet and triplet excitation energies, the design of TADF materials requires multiple methodological developments targeting among others a quantitative description of electronic excitation energetics, fully accounting for environmental electrostatics and molecular conformational effects, the accurate assessment of the quantum mechanical interactions that trigger the elementary electronic processes involved in TADF, and a robust picture for the dynamics of these fundamental processes. In this Perspective, we describe some recent progress along those lines and highlight the main challenges ahead for modeling, which we hope will be useful to the whole TADF community.

Olivier, Y., Sancho-Garcia, J., Muccioli, L., D'Avino, G., Beljonne, D. (2018). Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead. THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 9(20), 6149-6163 [10.1021/acs.jpclett.8b02327].

Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead

Muccioli, L.;D'Avino, G.;
2018

Abstract

Thermally activated delayed fluorescence (TADF) offers promise for all-organic light-emitting diodes with quantum efficiencies competing with those of transition-metal-based phosphorescent devices. While computational efforts have so far largely focused on gas-phase calculations of singlet and triplet excitation energies, the design of TADF materials requires multiple methodological developments targeting among others a quantitative description of electronic excitation energetics, fully accounting for environmental electrostatics and molecular conformational effects, the accurate assessment of the quantum mechanical interactions that trigger the elementary electronic processes involved in TADF, and a robust picture for the dynamics of these fundamental processes. In this Perspective, we describe some recent progress along those lines and highlight the main challenges ahead for modeling, which we hope will be useful to the whole TADF community.
2018
Olivier, Y., Sancho-Garcia, J., Muccioli, L., D'Avino, G., Beljonne, D. (2018). Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead. THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 9(20), 6149-6163 [10.1021/acs.jpclett.8b02327].
Olivier, Y.; Sancho-Garcia, J.-C.; Muccioli, L.; D'Avino, G.; Beljonne, D.*
File in questo prodotto:
File Dimensione Formato  
69_TADFperspective.pdf

accesso riservato

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso riservato
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF   Visualizza/Apri   Contatta l'autore
postprint_TADFperspective.pdf

Open Access dal 30/09/2019

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri
653354_postprint cop.pdf

Open Access dal 18/10/2019

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/653354
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 124
social impact