We propose a method to evaluate public transport network vulnerability. We study the evolution of the passenger Volume Over Capacity (VOC) ratio throughout the network to measure the spatial and temporal extent of the impacts caused by an unplanned service segment disruption. The VOC ratio provides an indication of the on-board travel comfort, an important level-of-service indicator, as well as reflects the residual capacity for absorbing additional demand. Because of the dynamic nature of public transport systems, disturbances propagate through the network in both time and space. Our modelling approach is able to capture transit system dynamics and quantify the extent to which the network exhibits spillover effects. We apply the method to the case of the rapid public transport system of Stockholm Sweden We demonstrate how the changes in network saturation and the corresponding recovery time can be quantified.

Malandri, C., Fonzone, A., Cats, O. (2018). Recovery time and propagation effects of passenger transport disruptions. PHYSICA. A, 505, 7-17 [10.1016/j.physa.2018.03.028].

Recovery time and propagation effects of passenger transport disruptions

Malandri, Caterina
;
Fonzone, Achille;
2018

Abstract

We propose a method to evaluate public transport network vulnerability. We study the evolution of the passenger Volume Over Capacity (VOC) ratio throughout the network to measure the spatial and temporal extent of the impacts caused by an unplanned service segment disruption. The VOC ratio provides an indication of the on-board travel comfort, an important level-of-service indicator, as well as reflects the residual capacity for absorbing additional demand. Because of the dynamic nature of public transport systems, disturbances propagate through the network in both time and space. Our modelling approach is able to capture transit system dynamics and quantify the extent to which the network exhibits spillover effects. We apply the method to the case of the rapid public transport system of Stockholm Sweden We demonstrate how the changes in network saturation and the corresponding recovery time can be quantified.
2018
Malandri, C., Fonzone, A., Cats, O. (2018). Recovery time and propagation effects of passenger transport disruptions. PHYSICA. A, 505, 7-17 [10.1016/j.physa.2018.03.028].
Malandri, Caterina*; Fonzone, Achille; Cats, Oded
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/652517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact