Editor's note: Thermal management in high-performance multicore platforms has become exceedingly complex due to variable workloads, thermal heterogeneity, and long, thermal transients. This article addresses these complexities by sophisticated analysis of noisy thermal sensor readings, dynamic learning to adapt to the peculiarities of the hardware and the applications, and a dynamic optimization strategy. - Axel Jantsch, TU Wien - Nikil Dutt, University of California at Irvine.
Bartolini, A., Diversi, R., Cesarini, D., Beneventi, F. (2018). Self-Aware Thermal Management for High-Performance Computing Processors. IEEE DESIGN & TEST, 35(5), 28-35 [10.1109/MDAT.2017.2774774].
Self-Aware Thermal Management for High-Performance Computing Processors
Bartolini, Andrea;Diversi, Roberto;Cesarini, Daniele;Beneventi, Francesco
2018
Abstract
Editor's note: Thermal management in high-performance multicore platforms has become exceedingly complex due to variable workloads, thermal heterogeneity, and long, thermal transients. This article addresses these complexities by sophisticated analysis of noisy thermal sensor readings, dynamic learning to adapt to the peculiarities of the hardware and the applications, and a dynamic optimization strategy. - Axel Jantsch, TU Wien - Nikil Dutt, University of California at Irvine.File | Dimensione | Formato | |
---|---|---|---|
2018_Bartolini_DnT_FP.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
887.92 kB
Formato
Adobe PDF
|
887.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.