This paper deals with a procedure capable to build the scenario tree associated with a parking lot equipped with several bidirectional charging stations for plug-in electric vehicles (EVs). The scenario tree is conceived to be implemented in multistage stochastic optimization models for day-Ahead energy management systems of microgrids or, more in general, power distribution networks. Specific operating rules relevant to the initial energy available in the cars entering the parking lot are defined, as well as the other typical constraints (such as maximum number of available charging stations, size of the EVs batteries, and power ratings of charging stations). Moreover, the model reproduces also the coupling between the operation of the parking lot with the power production of a photovoltaic unit. The tree generation procedure at first generates a number of equiprobable scenarios by using day-Ahead forecasts and the probability distributions characterizing the expected deviations with respect to the forecasts; then similar scenarios are grouped on the basis of the chosen criteria and of the number of stages. A specific procedure is finally proposed and applied in order to guarantee the existence of feasible solutions.

Borghetti, A., Napolitano, F., Rahmani-Dabbagh, S., Tossani, F. (2017). Scenario tree generation for the optimization model of a parking lot for electric vehicles. Institute of Electrical and Electronics Engineers Inc. [10.23919/AEIT.2017.8240519].

Scenario tree generation for the optimization model of a parking lot for electric vehicles

Borghetti, Alberto;Napolitano, Fabio;Tossani, Fabio
2017

Abstract

This paper deals with a procedure capable to build the scenario tree associated with a parking lot equipped with several bidirectional charging stations for plug-in electric vehicles (EVs). The scenario tree is conceived to be implemented in multistage stochastic optimization models for day-Ahead energy management systems of microgrids or, more in general, power distribution networks. Specific operating rules relevant to the initial energy available in the cars entering the parking lot are defined, as well as the other typical constraints (such as maximum number of available charging stations, size of the EVs batteries, and power ratings of charging stations). Moreover, the model reproduces also the coupling between the operation of the parking lot with the power production of a photovoltaic unit. The tree generation procedure at first generates a number of equiprobable scenarios by using day-Ahead forecasts and the probability distributions characterizing the expected deviations with respect to the forecasts; then similar scenarios are grouped on the basis of the chosen criteria and of the number of stages. A specific procedure is finally proposed and applied in order to guarantee the existence of feasible solutions.
2017
2017 AEIT International Annual Conference: Infrastructures for Energy and ICT: Opportunities for Fostering Innovation, AEIT 2017
1
6
Borghetti, A., Napolitano, F., Rahmani-Dabbagh, S., Tossani, F. (2017). Scenario tree generation for the optimization model of a parking lot for electric vehicles. Institute of Electrical and Electronics Engineers Inc. [10.23919/AEIT.2017.8240519].
Borghetti, Alberto; Napolitano, Fabio; Rahmani-Dabbagh, Saeed; Tossani, Fabio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/651364
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact