The employment of composite scaffolds with a well-organized architecture and multi-scale porosity certainly represents a valuable approach for achieving a tissue engineered construct to reproduce the middle and long-term behaviour of hierarchically complex tissues such as spongy bone. In this paper, fibre-reinforced composites scaffold for bone tissue engineering applications is described. These are composed of poly-l-lactide acid (PLLA) fibres embedded in a porous poly( -caprolactone) matrix, and were obtained by synergistic use of phase inversion/particulate leaching technique and filament winding technology. Porosity degree as high as 79.7% was achieved, the bimodal pore size distribution showing peaks at ca 10 and 200 μm diameter, respectively, accounting for 53.7% and 46.3% of the total porosity. In vitro degradation was carried out in PBS and SBF without significant degradation of the scaffold after 35 days, while in NaOH solution, a linear increase of weight lost was observed with preferential degradation of PLLA component. Subsequently, marrow stromal cells (MSC) and human osteoblasts (HOB) reached a plateau at 3 weeks, while at 5 weeks the number of cells was almost the same. Human marrow stromal cell and trabecular osteoblasts rapidly proliferate on the scaffold up to 3 weeks, promoting an oriented migration of bone cells along the fibre arrangement. Moreover, the role of seeded HOB and MSC on composite degradation mechanism was assessed by demonstrating a more relevant contribution to PLLA degradation of MSC when compared to HOB. The novel PCL/PLLA composite scaffolds thus showed promise whenever tuneable porosity, controlled degradability and guided cell–material interaction are simultaneously requested.

Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering / V. Guarino; F. Causa; P. Taddei; M. Di Foggia; G. Ciapetti; D. Martini; C. Fagnano; N. Baldini; L. Ambrosio. - In: BIOMATERIALS. - ISSN 0142-9612. - STAMPA. - 29:(2008), pp. 3662-3670. [10.1016/j.biomaterials.2008.05.024]

Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering

TADDEI, PAOLA;DI FOGGIA, MICHELE;MARTINI, DESIREE;FAGNANO, CONCEZIO;BALDINI, NICOLA;
2008

Abstract

The employment of composite scaffolds with a well-organized architecture and multi-scale porosity certainly represents a valuable approach for achieving a tissue engineered construct to reproduce the middle and long-term behaviour of hierarchically complex tissues such as spongy bone. In this paper, fibre-reinforced composites scaffold for bone tissue engineering applications is described. These are composed of poly-l-lactide acid (PLLA) fibres embedded in a porous poly( -caprolactone) matrix, and were obtained by synergistic use of phase inversion/particulate leaching technique and filament winding technology. Porosity degree as high as 79.7% was achieved, the bimodal pore size distribution showing peaks at ca 10 and 200 μm diameter, respectively, accounting for 53.7% and 46.3% of the total porosity. In vitro degradation was carried out in PBS and SBF without significant degradation of the scaffold after 35 days, while in NaOH solution, a linear increase of weight lost was observed with preferential degradation of PLLA component. Subsequently, marrow stromal cells (MSC) and human osteoblasts (HOB) reached a plateau at 3 weeks, while at 5 weeks the number of cells was almost the same. Human marrow stromal cell and trabecular osteoblasts rapidly proliferate on the scaffold up to 3 weeks, promoting an oriented migration of bone cells along the fibre arrangement. Moreover, the role of seeded HOB and MSC on composite degradation mechanism was assessed by demonstrating a more relevant contribution to PLLA degradation of MSC when compared to HOB. The novel PCL/PLLA composite scaffolds thus showed promise whenever tuneable porosity, controlled degradability and guided cell–material interaction are simultaneously requested.
2008
Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering / V. Guarino; F. Causa; P. Taddei; M. Di Foggia; G. Ciapetti; D. Martini; C. Fagnano; N. Baldini; L. Ambrosio. - In: BIOMATERIALS. - ISSN 0142-9612. - STAMPA. - 29:(2008), pp. 3662-3670. [10.1016/j.biomaterials.2008.05.024]
V. Guarino; F. Causa; P. Taddei; M. Di Foggia; G. Ciapetti; D. Martini; C. Fagnano; N. Baldini; L. Ambrosio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/65089
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 188
  • ???jsp.display-item.citation.isi??? 158
social impact