This study investigates the dynamic behaviour of plates crossed by distributed moving gravitational and inertial loads, in the case in which the relative magnitude of the moving mass introduces a coupling effect with the structure, with possible applications to the vibration analysis of railway bridges. A rectangular Kirchhoff plate is considered, simply supported on two opposite edges and free on the other two edges, loaded by a partially distributed mass travelling in the parallel direction with respect to the free edges. The formulation includes damping, and it is accomplished by the Rayleigh–Ritz method, expressing the solution in semi-analytical form. The shape functions for describing the transverse displacement field of the plate are selected as tensor products of linearly independent eigenfunctions of homogeneous uniform beams in flexural vibration, yielding a low-order model with time-dependent coefficients. Numerical examples are then presented and discussed, aimed at investigating the effects of each of the model governing parameters.
Sorrentino, S., Catania, G. (2018). Dynamic analysis of rectangular plates crossed by distributed moving loads. MATHEMATICS AND MECHANICS OF SOLIDS, 23(9), 1291-1302 [10.1177/1081286517719120].
Dynamic analysis of rectangular plates crossed by distributed moving loads
Sorrentino, S
;Catania, G
2018
Abstract
This study investigates the dynamic behaviour of plates crossed by distributed moving gravitational and inertial loads, in the case in which the relative magnitude of the moving mass introduces a coupling effect with the structure, with possible applications to the vibration analysis of railway bridges. A rectangular Kirchhoff plate is considered, simply supported on two opposite edges and free on the other two edges, loaded by a partially distributed mass travelling in the parallel direction with respect to the free edges. The formulation includes damping, and it is accomplished by the Rayleigh–Ritz method, expressing the solution in semi-analytical form. The shape functions for describing the transverse displacement field of the plate are selected as tensor products of linearly independent eigenfunctions of homogeneous uniform beams in flexural vibration, yielding a low-order model with time-dependent coefficients. Numerical examples are then presented and discussed, aimed at investigating the effects of each of the model governing parameters.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.