We establish the higher differentiability and the higher integrability for the gradient of vectorial minimizers of integral functionals with (p,q)-growth conditions. We assume that the non-homogeneous densities are uniformly convex and have a radial structure, with respect to the gradient variable, only at infinity. The results are obtained under a possibly discontinuous dependence on the spatial variable of the integrand.

Cupini, G., Giannetti, F., Giova, R., Passarelli di Napoli, A. (2018). Regularity results for vectorial minimizers of a class of degenerate convex integrals. JOURNAL OF DIFFERENTIAL EQUATIONS, 265(9), 4375-4416 [10.1016/j.jde.2018.06.010].

Regularity results for vectorial minimizers of a class of degenerate convex integrals

Cupini, Giovanni;
2018

Abstract

We establish the higher differentiability and the higher integrability for the gradient of vectorial minimizers of integral functionals with (p,q)-growth conditions. We assume that the non-homogeneous densities are uniformly convex and have a radial structure, with respect to the gradient variable, only at infinity. The results are obtained under a possibly discontinuous dependence on the spatial variable of the integrand.
2018
Cupini, G., Giannetti, F., Giova, R., Passarelli di Napoli, A. (2018). Regularity results for vectorial minimizers of a class of degenerate convex integrals. JOURNAL OF DIFFERENTIAL EQUATIONS, 265(9), 4375-4416 [10.1016/j.jde.2018.06.010].
Cupini, Giovanni; Giannetti, Flavia; Giova, Raffaella; Passarelli di Napoli, Antonia*
File in questo prodotto:
File Dimensione Formato  
CGGP-JDE.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 621.89 kB
Formato Adobe PDF
621.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/649631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 38
social impact