This paper deals with the synthesis and characterization of iron-hexacyanocobaltate (FeHCC) and its antibacterial properties. The nanoparticles were prepared by a facile co-precipitation technique. Crystal structure, particle morphology, and elemental composition were determined using X-ray Powder Diffraction, X-ray fluorescence spectroscopy, Transmission Electron Microscopy (TEM), and Infrared Spectroscopy (IR). The antibacterial activity of the FeHCC nanoparticles was tested against Escherichia coli and Staphylococcus aureus as models for Gram-negative and Gram-positive bacteria, respectively, by bacterial counting method and microscopic visualization (TEM, FEG-SEM, and fluorescence microscopy). The results showed that the FeHCC nanoparticles bind to the bacterial cells, inhibit bacterial growth in a dose- and time-dependent manner, inducing a loss of the membrane potential, the production of reactive oxygen species and the release of macromolecules (nucleic acids and proteins) in the extracellular environment. To the best of our knowledge, this is the first study reporting the antimicrobial effects of metal-hexacyanometallates suggesting practical uses of these materials in different areas, such as self-cleaning surfaces or food packaging.

Ciabocco, M., Cancemi, P., Saladino, M.L., Caponetti, E., Alduina, R., Berrettoni, M. (2018). Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles. JBIC, 23, 385-398 [10.1007/s00775-018-1544-x].

Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles

Ciabocco, Michela;Berrettoni, Mario
2018

Abstract

This paper deals with the synthesis and characterization of iron-hexacyanocobaltate (FeHCC) and its antibacterial properties. The nanoparticles were prepared by a facile co-precipitation technique. Crystal structure, particle morphology, and elemental composition were determined using X-ray Powder Diffraction, X-ray fluorescence spectroscopy, Transmission Electron Microscopy (TEM), and Infrared Spectroscopy (IR). The antibacterial activity of the FeHCC nanoparticles was tested against Escherichia coli and Staphylococcus aureus as models for Gram-negative and Gram-positive bacteria, respectively, by bacterial counting method and microscopic visualization (TEM, FEG-SEM, and fluorescence microscopy). The results showed that the FeHCC nanoparticles bind to the bacterial cells, inhibit bacterial growth in a dose- and time-dependent manner, inducing a loss of the membrane potential, the production of reactive oxygen species and the release of macromolecules (nucleic acids and proteins) in the extracellular environment. To the best of our knowledge, this is the first study reporting the antimicrobial effects of metal-hexacyanometallates suggesting practical uses of these materials in different areas, such as self-cleaning surfaces or food packaging.
2018
Ciabocco, M., Cancemi, P., Saladino, M.L., Caponetti, E., Alduina, R., Berrettoni, M. (2018). Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles. JBIC, 23, 385-398 [10.1007/s00775-018-1544-x].
Ciabocco, Michela; Cancemi, Patrizia; Saladino, Maria Luisa; Caponetti, Eugenio; Alduina, Rosa; Berrettoni, Mario*
File in questo prodotto:
File Dimensione Formato  
REVISED_PAPER for archive.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/649366
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact