Purpose: We previously showed the positive effects of the new antioxidant molecule bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate (IAC) in reducing basal hyperglycaemia and relieving glucose intolerance in a diabetes model. However, the chemical properties of IAC did not allow an efficient oral administration, thus representing the main failing of that study. Here, we tested the effect of a new oral delivery system based on solid lipid microparticles (SLMs) in a diabetes mouse model. Methods: The diabetes model was induced in C57B1/6J mice using streptozotocin and nicotinamide. Only the animals that overcame the glycaemic threshold of 180 mg/dL were enrolled in the study. Diabetic animals were then randomly assigned to 4 groups (n = 9) and treated once a day for 5 consecutive weeks with IAC (50, 100, and 150 mg/kg b.w.). The control group was composed of (n = 7) healthy mice that received only the vehicle. Glucose level was weekly monitored during the treatment period and up to 3 weeks after the suspension of the treatment. Glucose tolerance and insulin-resistance test were carried out. Results: Our results showed that SLMs maintained the IAC effect in reducing basal hyperglycaemia as well as improving the insulin sensitivity and glucose tolerance. Conclusion: The present study confirms that SLMs are promising drug carriers, which allow the oral administration of IAC ensuring its therapeutic efficacy. The concrete possibility to administer IAC per os represents a significant breakthrough in the putative consideration of this multi-radical scavenger in the diabetes therapeutic approach.

Efficacy of a new delivery system based on solid lipid microparticles for the oral administration of the non-conventional antioxidant IAC on a diabetes mouse model

Canistro, D.
;
Vivarelli, F.;Cirillo, S.;Albertini, B.;Passerini, N.;Paolini, M.
2018

Abstract

Purpose: We previously showed the positive effects of the new antioxidant molecule bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate (IAC) in reducing basal hyperglycaemia and relieving glucose intolerance in a diabetes model. However, the chemical properties of IAC did not allow an efficient oral administration, thus representing the main failing of that study. Here, we tested the effect of a new oral delivery system based on solid lipid microparticles (SLMs) in a diabetes mouse model. Methods: The diabetes model was induced in C57B1/6J mice using streptozotocin and nicotinamide. Only the animals that overcame the glycaemic threshold of 180 mg/dL were enrolled in the study. Diabetic animals were then randomly assigned to 4 groups (n = 9) and treated once a day for 5 consecutive weeks with IAC (50, 100, and 150 mg/kg b.w.). The control group was composed of (n = 7) healthy mice that received only the vehicle. Glucose level was weekly monitored during the treatment period and up to 3 weeks after the suspension of the treatment. Glucose tolerance and insulin-resistance test were carried out. Results: Our results showed that SLMs maintained the IAC effect in reducing basal hyperglycaemia as well as improving the insulin sensitivity and glucose tolerance. Conclusion: The present study confirms that SLMs are promising drug carriers, which allow the oral administration of IAC ensuring its therapeutic efficacy. The concrete possibility to administer IAC per os represents a significant breakthrough in the putative consideration of this multi-radical scavenger in the diabetes therapeutic approach.
2018
Canistro, D.*; Vivarelli, F.; Cirillo, S.; Soleti, A.; Albertini, B.; Passerini, N.; Merizzi, G.; Paolini, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/649350
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact