The ability of pathogens to perceive environmental conditions and modulate gene expression accordingly is a crucial feature for bacterial survival. In this respect, the heat-shock response, a universal cellular response, allows cells to adapt to hostile environmental conditions and to survive during stress. In the major human pathogen Helicobacter pylori the expression of chaperone-encoding operons is under control of two auto-regulated transcriptional repressors, HrcA and HspR, with the latter acting as the master regulator of the regulatory circuit. To further characterize the HspR regulon in H. pylori, we used global transcriptome analysis (RNA-sequencing) in combination with Chromatin Immunoprecipitation coupled with deep sequencing (ChIP-sequencing) of HspR genomic binding sites. Intriguingly, these analyses showed that HspR is involved in the regulation of different crucial cellular functions through a limited number of genomic binding sites. Moreover, we further characterized HspR-DNA interactions through hydroxyl-radical footprinting assays. This analysis in combination with a nucleotide sequence alignment of HspR binding sites, revealed a peculiar pattern of DNA protection and highlighted sequence conservation with the HAIR motif (an HspR-associated inverted repeat of Streptomyces spp.). Site-directed mutagenesis demonstrated that the HAIR motif is fundamental for HspR binding and that additional nucleotide determinants flanking the HAIR motif are required for complete binding of HspR to its operator sequence spanning over 70 bp of DNA. This finding is compatible with a model in which possibly a dimer of HspR recognizes the HAIR motif overlapping its promoter for binding and in turn cooperatively recruits two additional dimers on both sides of the HAIR motif.

The Helicobacter pylori heat-shock repressor HspR: Definition of its direct regulon and characterization of the cooperative DNA-binding mechanism on its own promoter / Pepe, Simona; Pinatel, Eva; Fiore, Elisabetta; Puccio, Simone; Peano, Clelia; Brignoli, Tarcisio; Vannini, Andrea; Danielli, Alberto; Scarlato, Vincenzo*; Roncarati, Davide. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - ELETTRONICO. - 9:AUG(2018), pp. 1887.1-1887.16. [10.3389/fmicb.2018.01887]

The Helicobacter pylori heat-shock repressor HspR: Definition of its direct regulon and characterization of the cooperative DNA-binding mechanism on its own promoter

Pepe, Simona
Membro del Collaboration Group
;
Brignoli, Tarcisio
Membro del Collaboration Group
;
Vannini, Andrea
Membro del Collaboration Group
;
Danielli, Alberto
Membro del Collaboration Group
;
Scarlato, Vincenzo
Membro del Collaboration Group
;
Roncarati, Davide
Membro del Collaboration Group
2018

Abstract

The ability of pathogens to perceive environmental conditions and modulate gene expression accordingly is a crucial feature for bacterial survival. In this respect, the heat-shock response, a universal cellular response, allows cells to adapt to hostile environmental conditions and to survive during stress. In the major human pathogen Helicobacter pylori the expression of chaperone-encoding operons is under control of two auto-regulated transcriptional repressors, HrcA and HspR, with the latter acting as the master regulator of the regulatory circuit. To further characterize the HspR regulon in H. pylori, we used global transcriptome analysis (RNA-sequencing) in combination with Chromatin Immunoprecipitation coupled with deep sequencing (ChIP-sequencing) of HspR genomic binding sites. Intriguingly, these analyses showed that HspR is involved in the regulation of different crucial cellular functions through a limited number of genomic binding sites. Moreover, we further characterized HspR-DNA interactions through hydroxyl-radical footprinting assays. This analysis in combination with a nucleotide sequence alignment of HspR binding sites, revealed a peculiar pattern of DNA protection and highlighted sequence conservation with the HAIR motif (an HspR-associated inverted repeat of Streptomyces spp.). Site-directed mutagenesis demonstrated that the HAIR motif is fundamental for HspR binding and that additional nucleotide determinants flanking the HAIR motif are required for complete binding of HspR to its operator sequence spanning over 70 bp of DNA. This finding is compatible with a model in which possibly a dimer of HspR recognizes the HAIR motif overlapping its promoter for binding and in turn cooperatively recruits two additional dimers on both sides of the HAIR motif.
2018
The Helicobacter pylori heat-shock repressor HspR: Definition of its direct regulon and characterization of the cooperative DNA-binding mechanism on its own promoter / Pepe, Simona; Pinatel, Eva; Fiore, Elisabetta; Puccio, Simone; Peano, Clelia; Brignoli, Tarcisio; Vannini, Andrea; Danielli, Alberto; Scarlato, Vincenzo*; Roncarati, Davide. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - ELETTRONICO. - 9:AUG(2018), pp. 1887.1-1887.16. [10.3389/fmicb.2018.01887]
Pepe, Simona; Pinatel, Eva; Fiore, Elisabetta; Puccio, Simone; Peano, Clelia; Brignoli, Tarcisio; Vannini, Andrea; Danielli, Alberto; Scarlato, Vincenzo*; Roncarati, Davide
File in questo prodotto:
File Dimensione Formato  
fmicb-09-01887.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/648299
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact