The explanation of productivity differentials is very important to identify the economic conditions that create inefficiency and to improve managerial performance. In the literature two main approaches have been developed: one-stage approaches and two-stage approaches. Daraio and Simar (2005, J Prod Anal 24(1):93–121) propose a fully nonparametric methodology based on conditional FDH and conditional order-m frontiers without any convexity assumption on the technology. However, convexity has always been assumed in mainstream production theory and general equilibrium. In addition, in many empirical applications, the convexity assumption can be reasonable and sometimes natural. Lead by these considerations, in this paper we propose a unifying approach to introduce external-environmental variables in nonparametric frontier models for convex and nonconvex technologies. Extending earlier contributions by Daraio and Simar (2005, J Prod Anal 24(1):93–121) as well as Cazals et al. (2002, J Econometrics 106:1–25), we introduce a conditional DEA estimator, i.e., an estimator of production frontier of DEA type conditioned to some external-environmental variables which are neither inputs nor outputs under the control of the producer. A robust version of this conditional estimator is proposed too. These various measures of efficiency provide also indicators of convexity which we illustrate using simulated and real data.

Daraio C., Simar L. (2007). Conditional Nonparametric Frontier Models for Convex and Non Convex Technologies: A unifying Approach. JOURNAL OF PRODUCTIVITY ANALYSIS, 28, 13-32 [10.1007/s11123-007-0049-3].

Conditional Nonparametric Frontier Models for Convex and Non Convex Technologies: A unifying Approach

DARAIO, CINZIA;
2007

Abstract

The explanation of productivity differentials is very important to identify the economic conditions that create inefficiency and to improve managerial performance. In the literature two main approaches have been developed: one-stage approaches and two-stage approaches. Daraio and Simar (2005, J Prod Anal 24(1):93–121) propose a fully nonparametric methodology based on conditional FDH and conditional order-m frontiers without any convexity assumption on the technology. However, convexity has always been assumed in mainstream production theory and general equilibrium. In addition, in many empirical applications, the convexity assumption can be reasonable and sometimes natural. Lead by these considerations, in this paper we propose a unifying approach to introduce external-environmental variables in nonparametric frontier models for convex and nonconvex technologies. Extending earlier contributions by Daraio and Simar (2005, J Prod Anal 24(1):93–121) as well as Cazals et al. (2002, J Econometrics 106:1–25), we introduce a conditional DEA estimator, i.e., an estimator of production frontier of DEA type conditioned to some external-environmental variables which are neither inputs nor outputs under the control of the producer. A robust version of this conditional estimator is proposed too. These various measures of efficiency provide also indicators of convexity which we illustrate using simulated and real data.
2007
Daraio C., Simar L. (2007). Conditional Nonparametric Frontier Models for Convex and Non Convex Technologies: A unifying Approach. JOURNAL OF PRODUCTIVITY ANALYSIS, 28, 13-32 [10.1007/s11123-007-0049-3].
Daraio C.; Simar L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/64828
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 274
  • ???jsp.display-item.citation.isi??? 250
social impact