First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e. g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality.

Cordin M, Lechner BAJ, Duerrbeck S, Menzel A, Bertel E, Redinger J, et al. (2014). Experimental observation of defect pair separation triggering phase transitions. SCIENTIFIC REPORTS, 4, 1-4 [10.1038/srep04110].

Experimental observation of defect pair separation triggering phase transitions

Franchini C
Membro del Collaboration Group
2014

Abstract

First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e. g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality.
2014
Cordin M, Lechner BAJ, Duerrbeck S, Menzel A, Bertel E, Redinger J, et al. (2014). Experimental observation of defect pair separation triggering phase transitions. SCIENTIFIC REPORTS, 4, 1-4 [10.1038/srep04110].
Cordin M; Lechner BAJ; Duerrbeck S; Menzel A; Bertel E; Redinger J; Franchini C
File in questo prodotto:
File Dimensione Formato  
srep04110.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Creative commons
Dimensione 547.1 kB
Formato Adobe PDF
547.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/648005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact