We prove that, for a hyperbolic two-bridge knot, infinitely many Dehn fillings are rigid in SO_0(4, 1). Here rigidity means that any discrete and faithful representation in SO_0(4, 1) is conjugate to the holonomy representation in SO_0(3, 1). We also show local rigidity for almost all Dehn fillings.

S. Francaviglia, J. Porti (2008). Rigidity of representations in SO(4,1) for Dehn fillings on 2-bridge knots. PACIFIC JOURNAL OF MATHEMATICS, 238(2), 249-274 [10.2140/pjm.2008.238.249].

Rigidity of representations in SO(4,1) for Dehn fillings on 2-bridge knots.

FRANCAVIGLIA, STEFANO;
2008

Abstract

We prove that, for a hyperbolic two-bridge knot, infinitely many Dehn fillings are rigid in SO_0(4, 1). Here rigidity means that any discrete and faithful representation in SO_0(4, 1) is conjugate to the holonomy representation in SO_0(3, 1). We also show local rigidity for almost all Dehn fillings.
2008
S. Francaviglia, J. Porti (2008). Rigidity of representations in SO(4,1) for Dehn fillings on 2-bridge knots. PACIFIC JOURNAL OF MATHEMATICS, 238(2), 249-274 [10.2140/pjm.2008.238.249].
S. Francaviglia; J. Porti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/64768
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact