We describe a model-based approach to analyse space–time count data. Such data can arise as a number of time series of counts, each representing a specific geographical area, i.e. as spatial time series, or as a number of spatial maps at different time points, i.e. as temporal spatial processes. We propose a Bayesian hierarchical formulation capable of embracing both cases, with principal kriging functions combined with latent parameters having prior distributions able to deal with spatial/temporal dependence. The methodology is applied to monitoring problems in environmental and epidemiological applications.

An interchangeable approach for modelling spatio-temporal count data

CHIOGNA M.;
2010

Abstract

We describe a model-based approach to analyse space–time count data. Such data can arise as a number of time series of counts, each representing a specific geographical area, i.e. as spatial time series, or as a number of spatial maps at different time points, i.e. as temporal spatial processes. We propose a Bayesian hierarchical formulation capable of embracing both cases, with principal kriging functions combined with latent parameters having prior distributions able to deal with spatial/temporal dependence. The methodology is applied to monitoring problems in environmental and epidemiological applications.
CHIOGNA M.; GAETAN C
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/647110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact