The errors–in–variables framework concerns static or dynamic systems whose input and output variables are affected by additive noise. Several estimation methods have been proposed for identifying dynamic errors–in–variables models. One of the more promising approaches is the so–called Frisch scheme. This paper decribes three different estimation criteria within the Frisch context and compares their estimation accuracy on the basis of the asymptotic covariance matrices of the estimates. Some numerical examples support well the theoretical results.

Comparison of three Frisch methods for errors-in-variables identification

SOVERINI, UMBERTO;DIVERSI, ROBERTO
2008

Abstract

The errors–in–variables framework concerns static or dynamic systems whose input and output variables are affected by additive noise. Several estimation methods have been proposed for identifying dynamic errors–in–variables models. One of the more promising approaches is the so–called Frisch scheme. This paper decribes three different estimation criteria within the Frisch context and compares their estimation accuracy on the basis of the asymptotic covariance matrices of the estimates. Some numerical examples support well the theoretical results.
Proceedings of the 17th IFAC World Congress
414
419
M. Hong; T. Soderstrom; U. Soverini; R. Diversi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/64691
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact