Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS. Cockayne syndrome is a devastating childhood progeria. Here, Alupei et al. show that cells from CS patients have reduced translation accuracy and elevated ROS, leading to generation of unstable proteins and activation of ER stress. Reducing ER stress by chemical chaperones in these cells rescues RNA polymerase I activity and protein synthesis.

Marius Costel Alupei, P.M. (2018). Loss of Proteostasis Is a Pathomechanism in Cockayne Syndrome. CELL REPORTS, 23(6), 1612-1619 [10.1016/j.celrep.2018.04.041].

Loss of Proteostasis Is a Pathomechanism in Cockayne Syndrome

Marianna Penzo
Membro del Collaboration Group
;
Lorenzo Montanaro
Membro del Collaboration Group
;
2018

Abstract

Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS. Cockayne syndrome is a devastating childhood progeria. Here, Alupei et al. show that cells from CS patients have reduced translation accuracy and elevated ROS, leading to generation of unstable proteins and activation of ER stress. Reducing ER stress by chemical chaperones in these cells rescues RNA polymerase I activity and protein synthesis.
2018
Marius Costel Alupei, P.M. (2018). Loss of Proteostasis Is a Pathomechanism in Cockayne Syndrome. CELL REPORTS, 23(6), 1612-1619 [10.1016/j.celrep.2018.04.041].
Marius Costel Alupei, Pallab Maity, Philipp Ralf Esser, Ioanna Krikki, Francesca Tuorto, Rosanna Parlato, Marianna Penzo, Adrian Schelling, Vi...espandi
File in questo prodotto:
File Dimensione Formato  
Cell reports Alupei et al.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/646843
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact