We present an accurate investigation of the algebraic conditions that the symbols of a nonsingular, univariate, binary, non-stationary subdivision scheme should fulfill in order to reproduce spaces of exponential polynomials. A subdivision scheme is said to possess the property of reproducing exponential polynomials if, for any initial data uniformly sampled from some exponential polynomial function, the scheme yields the same function in the limit. The importance of this property is due to the fact that several curves obtained by combinations of exponential polynomials (such as conic sections, spirals or special trigonometric and hyperbolic functions) are considered of interest in geometric modeling. Since the space of exponential polynomials trivially includes standard polynomials, this work extends the theory on polynomial reproduction to the non-stationary context. A significant application of the derived algebraic conditions on the subdivision symbols is the construction of new non-stationary subdivision schemes with specific reproduction properties.

Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction

Romani L
2011

Abstract

We present an accurate investigation of the algebraic conditions that the symbols of a nonsingular, univariate, binary, non-stationary subdivision scheme should fulfill in order to reproduce spaces of exponential polynomials. A subdivision scheme is said to possess the property of reproducing exponential polynomials if, for any initial data uniformly sampled from some exponential polynomial function, the scheme yields the same function in the limit. The importance of this property is due to the fact that several curves obtained by combinations of exponential polynomials (such as conic sections, spirals or special trigonometric and hyperbolic functions) are considered of interest in geometric modeling. Since the space of exponential polynomials trivially includes standard polynomials, this work extends the theory on polynomial reproduction to the non-stationary context. A significant application of the derived algebraic conditions on the subdivision symbols is the construction of new non-stationary subdivision schemes with specific reproduction properties.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/646343
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 43
social impact