The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm reproducing conic sections and respecting the convexity properties of the initial data, is here presented. Significant numerical examples are included to illustrate the effectiveness of the proposed method and the smoothness of the limit curves.

Albrecht G, Romani L (2012). Convexity preserving interpolatory subdivision with conic precision. APPLIED MATHEMATICS AND COMPUTATION, 219(8), 4049-4066 [10.1016/j.amc.2012.10.048].

Convexity preserving interpolatory subdivision with conic precision

Romani L
2012

Abstract

The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm reproducing conic sections and respecting the convexity properties of the initial data, is here presented. Significant numerical examples are included to illustrate the effectiveness of the proposed method and the smoothness of the limit curves.
2012
Albrecht G, Romani L (2012). Convexity preserving interpolatory subdivision with conic precision. APPLIED MATHEMATICS AND COMPUTATION, 219(8), 4049-4066 [10.1016/j.amc.2012.10.048].
Albrecht G; Romani L
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/646110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact