This paper introduces an extended environment for Kalman filtering that considers also the presence of additive noise on input observations in order to solve the problem of optimal (minimal variance) estimation of noise-corrupted input and output sequences. This environment includes as subcases both errors-in-variables filtering (optimal estimate of inputs and outputs from noisy observations) and traditional Kalman filtering (optimal stimate of state and output in presence of state and output noise). A Monte Carlo simulation shows that the performance of this extended filtering technique leads to the expected minimal variance estimates.

Kalman filtering in extended noise environments

DIVERSI, ROBERTO;GUIDORZI, ROBERTO;SOVERINI, UMBERTO
2005

Abstract

This paper introduces an extended environment for Kalman filtering that considers also the presence of additive noise on input observations in order to solve the problem of optimal (minimal variance) estimation of noise-corrupted input and output sequences. This environment includes as subcases both errors-in-variables filtering (optimal estimate of inputs and outputs from noisy observations) and traditional Kalman filtering (optimal stimate of state and output in presence of state and output noise). A Monte Carlo simulation shows that the performance of this extended filtering technique leads to the expected minimal variance estimates.
R. Diversi; R. Guidorzi; U. Soverini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/6459
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 23
social impact