We consider a class of operators of the type sum of squares of real analytic vector fields satisfying the Hormander bracket condition. The Poisson-Treves stratification is associated to the vector fields. We show that if the deepest stratum in the stratification, i.e., the stratum associated to the longest commutators, is symplectic, then the Gevrey regularity of the solution is better than the minimal Gevrey regularity given by the Derridj-Zuily theorem.

Paolo Albano and Antonio Bove (2018). The presence of symplectic strata improves the Gevrey regularity for sums of squares. JOURNAL D'ANALYSE MATHEMATIQUE, 134(1), 139-155 [10.1007/s11854-018-0005-3].

The presence of symplectic strata improves the Gevrey regularity for sums of squares

Paolo Albano;Antonio Bove
2018

Abstract

We consider a class of operators of the type sum of squares of real analytic vector fields satisfying the Hormander bracket condition. The Poisson-Treves stratification is associated to the vector fields. We show that if the deepest stratum in the stratification, i.e., the stratum associated to the longest commutators, is symplectic, then the Gevrey regularity of the solution is better than the minimal Gevrey regularity given by the Derridj-Zuily theorem.
2018
Paolo Albano and Antonio Bove (2018). The presence of symplectic strata improves the Gevrey regularity for sums of squares. JOURNAL D'ANALYSE MATHEMATIQUE, 134(1), 139-155 [10.1007/s11854-018-0005-3].
Paolo Albano and Antonio Bove
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/645116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact