This study analysed the effects of styrene, a main monomer in plastic manufacturing and acknowledged to be amongst the most common plastic leachates, on early embryo development of the Mediterranean mussel. Embryotoxicity tests showed that styrene impaired normal embryo development at concentrations (0.01 μg/L–1 mg/L) encompassing the environmental range. Occurrence of normal D-veligers was significantly reduced up to 40% of the total, and larval size was reduced of about 20%. D-veligers grown in the presence of styrene (0.1 and 10 μg/L) showed significant reduction of total Multixenobiotic resistance (MXR) efflux activity that was not apparently related to transcriptional expression of genes encoding P-glycoprotein (ABCB) and Mrp (ABCC), the two main ABC transporters of embryonal MXR system. Indeed, ABCB transcription was not affected by styrene, while ABCC was up-regulated. At these same concentrations, transcriptional profiles of 15 genes underlying key biological functions in embryo development and potential targets of adverse effects of styrene were analysed. Main transcriptional effects were observed for genes involved in shell biogenesis and lysosomal responses (down-regulation), and in neuroendocrine signaling and immune responses (up-regulation). On the whole, results indicate that styrene may affect mussel early development through dysregulation of gene transcription and suggest the possible conservation of styrene mode of action across bivalve life cycle and between bivalves and humans, as well as through unpredicted impacts on protective systems and on shell biogenesis.

Styrene impairs normal embryo development in the Mediterranean mussel (Mytilus galloprovincialis)

RAJAPAKSHA HADDOKARA GEDARA, RASIKA WATHSALA;Franzellitti, Silvia
;
SCAGLIONE, MORENA;Fabbri, Elena
2018

Abstract

This study analysed the effects of styrene, a main monomer in plastic manufacturing and acknowledged to be amongst the most common plastic leachates, on early embryo development of the Mediterranean mussel. Embryotoxicity tests showed that styrene impaired normal embryo development at concentrations (0.01 μg/L–1 mg/L) encompassing the environmental range. Occurrence of normal D-veligers was significantly reduced up to 40% of the total, and larval size was reduced of about 20%. D-veligers grown in the presence of styrene (0.1 and 10 μg/L) showed significant reduction of total Multixenobiotic resistance (MXR) efflux activity that was not apparently related to transcriptional expression of genes encoding P-glycoprotein (ABCB) and Mrp (ABCC), the two main ABC transporters of embryonal MXR system. Indeed, ABCB transcription was not affected by styrene, while ABCC was up-regulated. At these same concentrations, transcriptional profiles of 15 genes underlying key biological functions in embryo development and potential targets of adverse effects of styrene were analysed. Main transcriptional effects were observed for genes involved in shell biogenesis and lysosomal responses (down-regulation), and in neuroendocrine signaling and immune responses (up-regulation). On the whole, results indicate that styrene may affect mussel early development through dysregulation of gene transcription and suggest the possible conservation of styrene mode of action across bivalve life cycle and between bivalves and humans, as well as through unpredicted impacts on protective systems and on shell biogenesis.
Wathsala, Rajapaksha Haddokara Gedara Rasika; Franzellitti, Silvia*; Scaglione, Morena; Fabbri, Elena
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/641528
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact