In this paper, we study the statistical properties of weak-lensing peaks in light cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20 per cent with respect to the reference Λ cold dark matter model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalization. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically 70 per cent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than 2, and that the fraction of clusters in peaks approaches 100 per cent for haloes with redshift z ≰ 0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.

Weak-lensing peaks in simulated light cones: Investigating the coupling between dark matter and dark energy

Giocoli, Carlo;Moscardini, Lauro;Baldi, Marco;MENEGHETTI, MASSIMO;Metcalf, Robert B.
2018

Abstract

In this paper, we study the statistical properties of weak-lensing peaks in light cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20 per cent with respect to the reference Λ cold dark matter model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalization. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically 70 per cent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than 2, and that the fraction of clusters in peaks approaches 100 per cent for haloes with redshift z ≰ 0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.
Giocoli, Carlo; Moscardini, Lauro; Baldi, Marco; Meneghetti, Massimo; Metcalf, Robert B.
File in questo prodotto:
File Dimensione Formato  
Giocoli_etal_2018.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 7.03 MB
Formato Adobe PDF
7.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/640662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact