Structured catalysts based on hydrotalcite-derived coatings on open-cell metallic foams combine tailored basic/acidic sites, relatively high specific surface area and/or metal dispersion of the coating as well as low pressure drop and enhanced heat and mass transfer of the 3D metallic support. The properties of the resulting structured catalysts depend on the coating procedure. We have proposed the electro-base generation method for in situ and fast precipitation of Ni/Al and Rh/Mg/Al hydrotalcite-type materials on FeCrAlloy foams, which after calcination at high temperature give rise to structured catalysts for syngas (CO + H2) production through Steam Reforming and Catalytic Partial Oxidation of CH4. The fundamental understanding of the electrochemical-chemical reactions relevant for the electrodeposition and the influence of electrosynthesis parameters on the properties of the as-deposited coatings as well the resulting structured catalysts and, hence, on their catalytic performance, were summarized.
P.H. Ho, E.S. (2018). Hydrotalcite-Type Materials Electrodeposited on Open-Cell Metallic Foams as Structured Catalysts. INORGANICS, 6, 74-91 [10.3390/inorganics6030074].
Hydrotalcite-Type Materials Electrodeposited on Open-Cell Metallic Foams as Structured Catalysts
E. Scavetta;D. Tonelli;G. Fornasari;A. Vaccari;P. Benito
2018
Abstract
Structured catalysts based on hydrotalcite-derived coatings on open-cell metallic foams combine tailored basic/acidic sites, relatively high specific surface area and/or metal dispersion of the coating as well as low pressure drop and enhanced heat and mass transfer of the 3D metallic support. The properties of the resulting structured catalysts depend on the coating procedure. We have proposed the electro-base generation method for in situ and fast precipitation of Ni/Al and Rh/Mg/Al hydrotalcite-type materials on FeCrAlloy foams, which after calcination at high temperature give rise to structured catalysts for syngas (CO + H2) production through Steam Reforming and Catalytic Partial Oxidation of CH4. The fundamental understanding of the electrochemical-chemical reactions relevant for the electrodeposition and the influence of electrosynthesis parameters on the properties of the as-deposited coatings as well the resulting structured catalysts and, hence, on their catalytic performance, were summarized.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.