A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS) synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L) were: 0.5% (v/v) inoculum size, 15% (v/v) olive oil mill wastewater (OMWW) and 40◦C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40–90◦C), pH (6–10), and salt concentration (up to 300mM NaCl). Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils.

Pseudomonas rhizophila S211, a New Plant Growth-Promoting Rhizobacterium with Potential in Pesticide-Bioremediation / Hassen, Wafa; Neifar, Mohamed; Cherif, Hanene; Najjari, Afef; Chouchane, Habib; Driouich, Rim C.; Salah, Asma; Naili, Fatma; Mosbah, Amor; Souissi, Yasmine; Raddadi, Noura; Ouzari, Hadda I.; Fava, Fabio; Cherif, Ameur. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - ELETTRONICO. - 9:(2018), pp. 34.1-34.17. [10.3389/fmicb.2018.00034]

Pseudomonas rhizophila S211, a New Plant Growth-Promoting Rhizobacterium with Potential in Pesticide-Bioremediation

Raddadi, Noura;Fava, Fabio;
2018

Abstract

A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS) synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L) were: 0.5% (v/v) inoculum size, 15% (v/v) olive oil mill wastewater (OMWW) and 40◦C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40–90◦C), pH (6–10), and salt concentration (up to 300mM NaCl). Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils.
2018
Pseudomonas rhizophila S211, a New Plant Growth-Promoting Rhizobacterium with Potential in Pesticide-Bioremediation / Hassen, Wafa; Neifar, Mohamed; Cherif, Hanene; Najjari, Afef; Chouchane, Habib; Driouich, Rim C.; Salah, Asma; Naili, Fatma; Mosbah, Amor; Souissi, Yasmine; Raddadi, Noura; Ouzari, Hadda I.; Fava, Fabio; Cherif, Ameur. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - ELETTRONICO. - 9:(2018), pp. 34.1-34.17. [10.3389/fmicb.2018.00034]
Hassen, Wafa; Neifar, Mohamed; Cherif, Hanene; Najjari, Afef; Chouchane, Habib; Driouich, Rim C.; Salah, Asma; Naili, Fatma; Mosbah, Amor; Souissi, Yasmine; Raddadi, Noura; Ouzari, Hadda I.; Fava, Fabio; Cherif, Ameur
File in questo prodotto:
File Dimensione Formato  
Frontiers-Hassen et al 2018 Pseudomonas rhizophila S211.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri
table 1.doc

accesso aperto

Descrizione: Supplementary Material
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 50.5 kB
Formato Microsoft Word
50.5 kB Microsoft Word Visualizza/Apri
table 2.doc

accesso aperto

Descrizione: Supplementary Material
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 57.5 kB
Formato Microsoft Word
57.5 kB Microsoft Word Visualizza/Apri
table 3.doc

accesso aperto

Descrizione: Supplementary Material
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 43 kB
Formato Microsoft Word
43 kB Microsoft Word Visualizza/Apri
data sheet 1.doc

accesso aperto

Descrizione: Supplementary Material
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 770.5 kB
Formato Microsoft Word
770.5 kB Microsoft Word Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/637054
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 40
social impact