In land cover mapping, the complexity of landscapes is fitted into classes that may limit the recognition of natural variability. In this study, we tested the power of land cover classes (defined on the CORINE land cover classification scheme, a standardized legend set by EU for land cover inventory) to separate different vascular plant assemblages in forest ecosystems. In order to separately identify the role of different sources of inconsistency between land cover classes and species composition, we compared three different inventory processes, based on (i) dominant tree species as observed in the field, (ii) visual interpretation of remotely sensed images and (iii) semi-automatic supervised classification of satellite images. Our results underline that classifying forest ecosystems on the basis of their canopy species produces an over-simplification of habitat variability. Consequently, land cover maps based on non-specialized classification schemes should not be regarded as good proxies for plant biodiversity. If land cover maps are intended to describe and manage landscapes and their associated biodiversity, it is necessary to improve their capacity to represent the complexity of ecosystems.
Amici V., Filibeck G., Rocchini D., Geri F., Landi S., Giorgini D., et al. (2018). Are CORINE land cover classes reliable proxies of plant species assemblages? A test in Mediterranean forest landscapes. PLANT BIOSYSTEMS, 152(5), 994-1001 [10.1080/11263504.2017.1407372].
Are CORINE land cover classes reliable proxies of plant species assemblages? A test in Mediterranean forest landscapes
Rocchini D.;Landi S.;Chiarucci A.
2018
Abstract
In land cover mapping, the complexity of landscapes is fitted into classes that may limit the recognition of natural variability. In this study, we tested the power of land cover classes (defined on the CORINE land cover classification scheme, a standardized legend set by EU for land cover inventory) to separate different vascular plant assemblages in forest ecosystems. In order to separately identify the role of different sources of inconsistency between land cover classes and species composition, we compared three different inventory processes, based on (i) dominant tree species as observed in the field, (ii) visual interpretation of remotely sensed images and (iii) semi-automatic supervised classification of satellite images. Our results underline that classifying forest ecosystems on the basis of their canopy species produces an over-simplification of habitat variability. Consequently, land cover maps based on non-specialized classification schemes should not be regarded as good proxies for plant biodiversity. If land cover maps are intended to describe and manage landscapes and their associated biodiversity, it is necessary to improve their capacity to represent the complexity of ecosystems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.