Climate change represents a serious threat to the health of our planet and imposed a discussion upon energy waste and production. In this paper we propose a smart grid architecture relying on blockchain technology aimed at discouraging the production and distribution of non-renewable energy as the one derived from fossil fuel. Our model relies on a reverse application of a recently introduced attack to the blockchain based on chain forking. Our system involves both a central authority and a number of distributed peers representing the stakeholders of the energy grid. This system preserves those advantages derived from the blockchain and it also address some limitations such as energy waste for mining operations. In addition, the reverse attack we rely on allows to mitigate the behavior of a classic blockchain, which is intrinsecally self-regulated, and to trigger a sort of ethical action which penalizes non-renewable energy producers. Blacklisted stakeholders will be induced to provide their transaction with higher fees in order to preserve the selling rate.
Antonio Magnani, L.C. (2018). Feather forking as a positive force: incentivising green energy production in a blockchain-based smart grid. New York : ACM [10.1145/3211933.3211951].
Feather forking as a positive force: incentivising green energy production in a blockchain-based smart grid
MAGNANI, ANTONIO;Luca Calderoni;
2018
Abstract
Climate change represents a serious threat to the health of our planet and imposed a discussion upon energy waste and production. In this paper we propose a smart grid architecture relying on blockchain technology aimed at discouraging the production and distribution of non-renewable energy as the one derived from fossil fuel. Our model relies on a reverse application of a recently introduced attack to the blockchain based on chain forking. Our system involves both a central authority and a number of distributed peers representing the stakeholders of the energy grid. This system preserves those advantages derived from the blockchain and it also address some limitations such as energy waste for mining operations. In addition, the reverse attack we rely on allows to mitigate the behavior of a classic blockchain, which is intrinsecally self-regulated, and to trigger a sort of ethical action which penalizes non-renewable energy producers. Blacklisted stakeholders will be induced to provide their transaction with higher fees in order to preserve the selling rate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.