This paper discusses some significant design issues that are faced in resonant inductive system for wireless power transfer ‘on the move’. The targeted system adopts a single AC source to power a sequence of transmitting (Tx) coils, placed along the Rx path, whose geometry is optimized to minimize the variations of coupling for every possible Rx position. To retain a constant coupling coefficient, two nearby Tx coils are series-connected and simultaneously activated, establishing a path without any theoretical bound on its length, by a suitable switching network. This work analyzes the effects of asynchronous switching times, which are rigorously accounted for and minimized by a proper design of the compensating circuit elements, minimizing both the voltage spikes and the over currents on the coils, while keeping the system at resonance. A prototype operating at 6.78 MHz is built and experimental validations are carried out to verify the feasibility of a constant coupling link without experiencing the mentioned effects, but the adopted procedure is general and independent on its size or frequency.

Pacini, A., Mastri, F., Masotti, D., Costanzo, A. (2018). Criticality mitigation in a quasi-constant coupling position independent resonant IPT network. INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 99, 1-10 [10.1017/S1759078718000788].

Criticality mitigation in a quasi-constant coupling position independent resonant IPT network

Pacini, Alex;Mastri, Franco;Masotti, Diego;Costanzo, Alessandra
2018

Abstract

This paper discusses some significant design issues that are faced in resonant inductive system for wireless power transfer ‘on the move’. The targeted system adopts a single AC source to power a sequence of transmitting (Tx) coils, placed along the Rx path, whose geometry is optimized to minimize the variations of coupling for every possible Rx position. To retain a constant coupling coefficient, two nearby Tx coils are series-connected and simultaneously activated, establishing a path without any theoretical bound on its length, by a suitable switching network. This work analyzes the effects of asynchronous switching times, which are rigorously accounted for and minimized by a proper design of the compensating circuit elements, minimizing both the voltage spikes and the over currents on the coils, while keeping the system at resonance. A prototype operating at 6.78 MHz is built and experimental validations are carried out to verify the feasibility of a constant coupling link without experiencing the mentioned effects, but the adopted procedure is general and independent on its size or frequency.
2018
Pacini, A., Mastri, F., Masotti, D., Costanzo, A. (2018). Criticality mitigation in a quasi-constant coupling position independent resonant IPT network. INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 99, 1-10 [10.1017/S1759078718000788].
Pacini, Alex*; Mastri, Franco; Masotti, Diego; Costanzo, Alessandra
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/635778
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact