This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.

Mohammad Arefi, M.M. (2018). Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels. STEEL AND COMPOSITE STRUCTURES, 27(4), 525-536 [10.12989/scs.2018.27.4.525].

Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels

Francesco Tornabene
2018

Abstract

This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.
2018
Mohammad Arefi, M.M. (2018). Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels. STEEL AND COMPOSITE STRUCTURES, 27(4), 525-536 [10.12989/scs.2018.27.4.525].
Mohammad Arefi, Masoud Mohammadi, Ali Tabatabaeian, Rossana Dimitri, Francesco Tornabene
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/635448
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 75
social impact