The electrochemiluminescence (ECL) performances were comparatively investigated at flat and nanoporous gold (NPG) electrodes of different thicknesses (120 and 200 nm) and roughness factors (fr). The phenomena were studied using either tripropylamine (TPrA) or peroxydisulfate (S2O82−) as sacrificial coreactant and Ruthenium (II)-tris(2,2′-bipyridine) as emitting species. The experiments performed using TPrA showed, at first glance, a linear dependence of the ECL emission with respect to the effective surface area of the NPG electrodes. However, ECL signals were not stable in the measuring conditions, presumably due to amine absorption on the metal surface, leading to electrode corrosion and modification of the surface morphology. The experiments made using peroxydisulfate as coreactant provided conversely a stable ECL response, about proportional to the effective electrode surface area, in the considered range of thicknesses.

Coreactant electrochemiluminescence at nanoporous gold electrodes

Villani, Elena;Valenti, Giovanni;Marcaccio, Massimo;Paolucci, Francesco
2018

Abstract

The electrochemiluminescence (ECL) performances were comparatively investigated at flat and nanoporous gold (NPG) electrodes of different thicknesses (120 and 200 nm) and roughness factors (fr). The phenomena were studied using either tripropylamine (TPrA) or peroxydisulfate (S2O82−) as sacrificial coreactant and Ruthenium (II)-tris(2,2′-bipyridine) as emitting species. The experiments performed using TPrA showed, at first glance, a linear dependence of the ECL emission with respect to the effective surface area of the NPG electrodes. However, ECL signals were not stable in the measuring conditions, presumably due to amine absorption on the metal surface, leading to electrode corrosion and modification of the surface morphology. The experiments made using peroxydisulfate as coreactant provided conversely a stable ECL response, about proportional to the effective electrode surface area, in the considered range of thicknesses.
Villani, Elena; Valenti, Giovanni; Marcaccio, Massimo; Mattarozzi, Luca; Barison, Simona; Garoli, Denis; Cattarin, Sandro; Paolucci, Francesco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/635157
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact