Convolutionalization of discriminative neural networks, introduced for segmentation purposes, is a simple technique allowing to generate heat-maps relative to the location of a given object in a larger image. In this article, we apply this technique to automatically crop images at their actual point of interest, fine tuning them with the final aim to improve the quality of a dataset. The use of an ensemble of fully convolutional nets sensibly reduce the risk of overfitting, resulting in reasonably accurate croppings. The methodology has been tested on a well known dataset, particularly renowned for containing badly centered and noisy images: the Food-101 dataset, composed of 101K images spread over 101 food categories. The quality of croppings can be testified by a sensible and uniform improvement (3-5%) in the classification accuracy of classifiers, even external to the ensemble.
Andrea Asperti, Pietro Battilana (2018). Automatic point-of-interest image cropping via ensembled convolutionalization. INTERNATIONAL JOURNAL OF NEURAL NETWORKS AND ADVANCED APPLICATIONS, 5, 17-24.
Automatic point-of-interest image cropping via ensembled convolutionalization
Andrea Asperti
;
2018
Abstract
Convolutionalization of discriminative neural networks, introduced for segmentation purposes, is a simple technique allowing to generate heat-maps relative to the location of a given object in a larger image. In this article, we apply this technique to automatically crop images at their actual point of interest, fine tuning them with the final aim to improve the quality of a dataset. The use of an ensemble of fully convolutional nets sensibly reduce the risk of overfitting, resulting in reasonably accurate croppings. The methodology has been tested on a well known dataset, particularly renowned for containing badly centered and noisy images: the Food-101 dataset, composed of 101K images spread over 101 food categories. The quality of croppings can be testified by a sensible and uniform improvement (3-5%) in the classification accuracy of classifiers, even external to the ensemble.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.