We describe a multi-step “rotating wall” compression of a mixed cold antiproton–electron non-neutral plasma in a 4.46 T Penning–Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 10 13 m −3 , which pave the way for an efficient pulsed antihydrogen production in AEḡIS.

Aghion, S., Amsler, C., Bonomi, G., Brusa, R.S., Caccia, M., Caravita, R., et al. (2018). Compression of a mixed antiproton and electron non-neutral plasma to high densities. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR AND OPTICAL PHYSICS, 72, 1-11 [10.1140/epjd/e2018-80617-x].

Compression of a mixed antiproton and electron non-neutral plasma to high densities

Prevedelli, Marco;
2018

Abstract

We describe a multi-step “rotating wall” compression of a mixed cold antiproton–electron non-neutral plasma in a 4.46 T Penning–Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 10 13 m −3 , which pave the way for an efficient pulsed antihydrogen production in AEḡIS.
2018
Aghion, S., Amsler, C., Bonomi, G., Brusa, R.S., Caccia, M., Caravita, R., et al. (2018). Compression of a mixed antiproton and electron non-neutral plasma to high densities. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR AND OPTICAL PHYSICS, 72, 1-11 [10.1140/epjd/e2018-80617-x].
Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comp...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/634495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact