Recently a cell differentiation model based on noisy random Boolean networks has been proposed. This mathematical model is able to describe in an elegant way the most relevant features of cell differentiation. Noise plays a key role in this model; the different stages of the differentiation process are emergent dynamical configurations deriving from the control of the intracellular noise level. In this work we compare two approaches to this cell differentiation framework: the first one (already present in the literature) is focused on a network analysis representing the average wandering of the system among its attractors, whereas the second (new) approach takes into consideration the dynamical stories of thousands of individual cells. Results showed that under a particular noise condition the two approaches produce comparable results. Therefore both can be used to model the cell differentiation process in an integrative and complementary manner.

A comparison between threshold ergodic sets and stochastic simulation of boolean networks for modelling cell differentiation / Braccini, Michele*; Roli, Andrea; Villani, Marco; Serra, Roberto. - STAMPA. - 830:(2018), pp. 116-128. (Intervento presentato al convegno 12th Italian Workshop on Artificial Life and Evolutionary Computation, WIVACE 2017 tenutosi a ita nel 2017) [10.1007/978-3-319-78658-2_9].

A comparison between threshold ergodic sets and stochastic simulation of boolean networks for modelling cell differentiation

Braccini, Michele
;
Roli, Andrea;
2018

Abstract

Recently a cell differentiation model based on noisy random Boolean networks has been proposed. This mathematical model is able to describe in an elegant way the most relevant features of cell differentiation. Noise plays a key role in this model; the different stages of the differentiation process are emergent dynamical configurations deriving from the control of the intracellular noise level. In this work we compare two approaches to this cell differentiation framework: the first one (already present in the literature) is focused on a network analysis representing the average wandering of the system among its attractors, whereas the second (new) approach takes into consideration the dynamical stories of thousands of individual cells. Results showed that under a particular noise condition the two approaches produce comparable results. Therefore both can be used to model the cell differentiation process in an integrative and complementary manner.
2018
Communications in Computer and Information Science
116
128
A comparison between threshold ergodic sets and stochastic simulation of boolean networks for modelling cell differentiation / Braccini, Michele*; Roli, Andrea; Villani, Marco; Serra, Roberto. - STAMPA. - 830:(2018), pp. 116-128. (Intervento presentato al convegno 12th Italian Workshop on Artificial Life and Evolutionary Computation, WIVACE 2017 tenutosi a ita nel 2017) [10.1007/978-3-319-78658-2_9].
Braccini, Michele*; Roli, Andrea; Villani, Marco; Serra, Roberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/634391
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact