We propose a scaled gradient projection algorithm for the reconstruction of 3D X-ray tomographic images from limited data. The problem arises from the discretization of an ill-posed integral problem and, due to the incompleteness of the data, has infinite possible solutions. Hence, by following a regularization approach, we formulate the reconstruction problem as the nonnegatively constrained minimization of an objective function given by the sum of a fit-to-data term and a smoothed differentiable Total Variation function. The problem is challenging for its very large size and because a good reconstruction is required in a very short time. For these reasons, we propose to use a gradient projection method, accelerated by exploiting a scaling strategy for defining gradient-based descent directions and generalized Barzilai–Borwein rules for the choice of the step-lengths. The numerical results on a 3D phantom are very promising since they show the ability of the scaling strategy to accelerate the convergence in the first iterations.
Loli Piccolomini E, C.V. (2018). Reconstruction of 3D X-Rays CT images from reduced samplings by a scaled gradient projection algorithm. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 71(1), 171-191 [10.1007/s10589-017-9961-2].
Reconstruction of 3D X-Rays CT images from reduced samplings by a scaled gradient projection algorithm
Loli Piccolomini E;Morotti E.;
2018
Abstract
We propose a scaled gradient projection algorithm for the reconstruction of 3D X-ray tomographic images from limited data. The problem arises from the discretization of an ill-posed integral problem and, due to the incompleteness of the data, has infinite possible solutions. Hence, by following a regularization approach, we formulate the reconstruction problem as the nonnegatively constrained minimization of an objective function given by the sum of a fit-to-data term and a smoothed differentiable Total Variation function. The problem is challenging for its very large size and because a good reconstruction is required in a very short time. For these reasons, we propose to use a gradient projection method, accelerated by exploiting a scaling strategy for defining gradient-based descent directions and generalized Barzilai–Borwein rules for the choice of the step-lengths. The numerical results on a 3D phantom are very promising since they show the ability of the scaling strategy to accelerate the convergence in the first iterations.File | Dimensione | Formato | |
---|---|---|---|
paper_revised.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
2.85 MB
Formato
Adobe PDF
|
2.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.