Polydnaviruses (PDV) are viral symbionts associated with ichneumonid and braconid wasps parasitizing moth larvae, which are able to disrupt the host immune response and development, as well as a number of other physiological pathways. The immunosuppressive role of PDV has been more intensely investigated, while very little is known about the PDV-encoded factors disrupting host development. Here we address this research issue by further expanding the functional analysis of ankyrin genes encoded by the bracovirus associated with Toxoneuron nigriceps (Hymenoptera, Braconidae). In a previous study, using Drosophila melanogaster as experimental model system, we demonstrated the negative impact of TnBVank1 impairing the ecdysone biosynthesis by altering endocytic traffic in prothoracic gland cells. With a similar approach here we demonstrate that another member of the viral ank gene family, TnBVank3, does also contribute to the disruption of ecdysone biosynthesis, but with a completely different mechanism. We show that its expression in Drosophila prothoracic gland (PG) blocks the larval-pupal transition by impairing the expression of steroidogenic genes. Furthermore, we found that TnBVank3 affects the expression of genes involved in the insulin/TOR signaling and the constitutive activation of the insulin pathway in the PG rescues the pupariation impairment. Collectively, our data demonstrate that TnBVANK3 acts as a virulence factor by exerting a synergistic and non-overlapping function with TnBVANK1 to disrupt the ecdysone biosynthesis.

Ignesti, M., Ferrara, R., Romani, P., Valzania, L., Serafini, G., Pennacchio, F., et al. (2018). A polydnavirus-encoded ANK protein has a negative impact on steroidogenesis and development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 95, 26-32 [10.1016/j.ibmb.2018.03.003].

A polydnavirus-encoded ANK protein has a negative impact on steroidogenesis and development

Ignesti, Marilena;Romani, Patrizia;Valzania, Luca;Serafini, Giulia;Cavaliere, Valeria
;
Gargiulo, Giuseppe
2018

Abstract

Polydnaviruses (PDV) are viral symbionts associated with ichneumonid and braconid wasps parasitizing moth larvae, which are able to disrupt the host immune response and development, as well as a number of other physiological pathways. The immunosuppressive role of PDV has been more intensely investigated, while very little is known about the PDV-encoded factors disrupting host development. Here we address this research issue by further expanding the functional analysis of ankyrin genes encoded by the bracovirus associated with Toxoneuron nigriceps (Hymenoptera, Braconidae). In a previous study, using Drosophila melanogaster as experimental model system, we demonstrated the negative impact of TnBVank1 impairing the ecdysone biosynthesis by altering endocytic traffic in prothoracic gland cells. With a similar approach here we demonstrate that another member of the viral ank gene family, TnBVank3, does also contribute to the disruption of ecdysone biosynthesis, but with a completely different mechanism. We show that its expression in Drosophila prothoracic gland (PG) blocks the larval-pupal transition by impairing the expression of steroidogenic genes. Furthermore, we found that TnBVank3 affects the expression of genes involved in the insulin/TOR signaling and the constitutive activation of the insulin pathway in the PG rescues the pupariation impairment. Collectively, our data demonstrate that TnBVANK3 acts as a virulence factor by exerting a synergistic and non-overlapping function with TnBVANK1 to disrupt the ecdysone biosynthesis.
2018
Ignesti, M., Ferrara, R., Romani, P., Valzania, L., Serafini, G., Pennacchio, F., et al. (2018). A polydnavirus-encoded ANK protein has a negative impact on steroidogenesis and development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 95, 26-32 [10.1016/j.ibmb.2018.03.003].
Ignesti, Marilena; Ferrara, Rosalba; Romani, Patrizia; Valzania, Luca; Serafini, Giulia; Pennacchio, Francesco; Cavaliere, Valeria; Gargiulo, Giuseppe...espandi
File in questo prodotto:
File Dimensione Formato  
IB-D-17-00296R1.pdf

Open Access dal 19/03/2019

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 650.64 kB
Formato Adobe PDF
650.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/631890
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact