The susceptibility to various biocides was examined in planktonic cells and biofilms of the obligate aerobe, PCBs degrader, Pseudomonas pseudoalcaligenes KF707. The toxicity of two antibiotics, amikacin and rifampicin, three metalloid oxyanions (AsO2(-), SeO3(2-), TeO3(2-)) and three metal cations (Cd2+, Ni2+, Al3+) was tested at two stages of the biofilm-development (4 and 24 h) and compared to planktonic cells susceptibility. Mature biofilms formed in rich (LB, Luria-Bertani) medium were thicker (23 microm) than biofilms grown in minimal (SA saccarose-arginine) medium (13 microm). Early grown (4 h) SA-biofilms, which consisted of a few sparse/attached cells, were 50-100 times more resistant to antibiotics than planktonic cells. Conversely, minor changes in tolerance to metal(loid)s were seen in both SA- and LB-grown biofilms. In contrast to planktonic cells, no reduction of TeO3(2-) to elemental Te0 or SeO3(2-) to elemental Se0 was seen in KF707 biofilms. The data indicate that: (a) metal tolerance in KF707 biofilms, under the growth and exposure conditions described here, is different than antibiotic tolerance; (b) KF707 planktonic cells and biofilms, are almost equally susceptible to killing by metal cations and oxyanions, and (c) biofilm-tolerance to TeO3(2-) and SeO3(2-) is not linked to metalloid reduction; this means that KF707 planktonic cells and biofilms differ in their physiology and strategy to counteract metalloid toxicity.

Tremaroli V, Fedi S, Turner RJ, Ceri H, Zannoni D. (2008). Pseudomonas pseudoalcaligenes KF707 upon biofilm formation on a polystyrene surface acquire a strong antibiotic resistance with minor changes in their tolerance to metal cations and metalloid oxyanions. ARCHIVES OF MICROBIOLOGY, 190, 29-39 [10.1007/s00203-008-0360-z].

Pseudomonas pseudoalcaligenes KF707 upon biofilm formation on a polystyrene surface acquire a strong antibiotic resistance with minor changes in their tolerance to metal cations and metalloid oxyanions.

FEDI, STEFANO;ZANNONI, DAVIDE
2008

Abstract

The susceptibility to various biocides was examined in planktonic cells and biofilms of the obligate aerobe, PCBs degrader, Pseudomonas pseudoalcaligenes KF707. The toxicity of two antibiotics, amikacin and rifampicin, three metalloid oxyanions (AsO2(-), SeO3(2-), TeO3(2-)) and three metal cations (Cd2+, Ni2+, Al3+) was tested at two stages of the biofilm-development (4 and 24 h) and compared to planktonic cells susceptibility. Mature biofilms formed in rich (LB, Luria-Bertani) medium were thicker (23 microm) than biofilms grown in minimal (SA saccarose-arginine) medium (13 microm). Early grown (4 h) SA-biofilms, which consisted of a few sparse/attached cells, were 50-100 times more resistant to antibiotics than planktonic cells. Conversely, minor changes in tolerance to metal(loid)s were seen in both SA- and LB-grown biofilms. In contrast to planktonic cells, no reduction of TeO3(2-) to elemental Te0 or SeO3(2-) to elemental Se0 was seen in KF707 biofilms. The data indicate that: (a) metal tolerance in KF707 biofilms, under the growth and exposure conditions described here, is different than antibiotic tolerance; (b) KF707 planktonic cells and biofilms, are almost equally susceptible to killing by metal cations and oxyanions, and (c) biofilm-tolerance to TeO3(2-) and SeO3(2-) is not linked to metalloid reduction; this means that KF707 planktonic cells and biofilms differ in their physiology and strategy to counteract metalloid toxicity.
2008
Tremaroli V, Fedi S, Turner RJ, Ceri H, Zannoni D. (2008). Pseudomonas pseudoalcaligenes KF707 upon biofilm formation on a polystyrene surface acquire a strong antibiotic resistance with minor changes in their tolerance to metal cations and metalloid oxyanions. ARCHIVES OF MICROBIOLOGY, 190, 29-39 [10.1007/s00203-008-0360-z].
Tremaroli V; Fedi S; Turner RJ; Ceri H; Zannoni D.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/62878
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact