Let Πs(n) denote the set of partitions of the integer n into exactly s parts, and image the subset of Πs(n) containing all partitions whose two largest parts coincide. We present a bijection between image and Πs−1(m) for a suitable m<n in the cases s=3,4. Such bijections yield recurrence formulas for the numbers P3(n) and P4(n) of partitions of n into 3 and 4 parts. Furthermore, we show that the present approach can be extended to the case s=5,6.

M. Barnabei, F. Bonetti, M.Silimbani (2009). Bijections and recurrences for integer partitions in a bounded number of parts. APPLIED MATHEMATICS LETTERS, 22, 297-303 [10.1016/j.aml.2008.03.025].

Bijections and recurrences for integer partitions in a bounded number of parts

BARNABEI, MARILENA;BONETTI, FLAVIO;SILIMBANI, MATTEO
2009

Abstract

Let Πs(n) denote the set of partitions of the integer n into exactly s parts, and image the subset of Πs(n) containing all partitions whose two largest parts coincide. We present a bijection between image and Πs−1(m) for a suitable m<n in the cases s=3,4. Such bijections yield recurrence formulas for the numbers P3(n) and P4(n) of partitions of n into 3 and 4 parts. Furthermore, we show that the present approach can be extended to the case s=5,6.
2009
M. Barnabei, F. Bonetti, M.Silimbani (2009). Bijections and recurrences for integer partitions in a bounded number of parts. APPLIED MATHEMATICS LETTERS, 22, 297-303 [10.1016/j.aml.2008.03.025].
M. Barnabei; F. Bonetti; M.Silimbani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/62766
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact