The Eiffel tower is the most visited monument in the world. Millions of visitors have taken millions of pictures of it over the last century but apparently a dynamic picture (that is a dynamic characterization) does not exist or is not publicly available. In this paper we show the amount of information that can be extracted from a few recordings of ambient tremor collected on the tower and on the surrounding subsoil with a single pocket seismometer in a few minutes, during a leisure visit. We also propose a numerical model for the tower, capable to fit the observed data. This is interesting because the mass and stiffness distribution of the tower is unique and does not follow any modern construction rule. The dynamic model of the tower would also be important if Paris were a high seismic hazard town, which is not. According to our model, the tower could withstand peak ground accelerations >100% larger than the values prescribed by current seismic hazard estimates. The dynamic model of the tower is also important to better design the future interventions and to monitor the ageing of the structure.

Castellaro, S., Perricone, L., Bartolomei, M., Isani, S. (2017). Dynamic Characterization of the Eiffel Tower. SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS : Elsevier Ltd [10.1016/j.proeng.2017.09.461].

Dynamic Characterization of the Eiffel Tower

Castellaro, Silvia
Writing – Original Draft Preparation
;
PERRICONE, LUIGI;BARTOLOMEI, MARCO;
2017

Abstract

The Eiffel tower is the most visited monument in the world. Millions of visitors have taken millions of pictures of it over the last century but apparently a dynamic picture (that is a dynamic characterization) does not exist or is not publicly available. In this paper we show the amount of information that can be extracted from a few recordings of ambient tremor collected on the tower and on the surrounding subsoil with a single pocket seismometer in a few minutes, during a leisure visit. We also propose a numerical model for the tower, capable to fit the observed data. This is interesting because the mass and stiffness distribution of the tower is unique and does not follow any modern construction rule. The dynamic model of the tower would also be important if Paris were a high seismic hazard town, which is not. According to our model, the tower could withstand peak ground accelerations >100% larger than the values prescribed by current seismic hazard estimates. The dynamic model of the tower is also important to better design the future interventions and to monitor the ageing of the structure.
2017
Procedia Engineering
3332
3337
Castellaro, S., Perricone, L., Bartolomei, M., Isani, S. (2017). Dynamic Characterization of the Eiffel Tower. SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS : Elsevier Ltd [10.1016/j.proeng.2017.09.461].
Castellaro, Silvia; Perricone, Luigi; Bartolomei, Marco; Isani, Stefano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/627649
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact