We establish a combinatorial connection between the sequence $(i_{n,k})$ counting the involutions on $n$ letters with $k$ descents and the sequence $(a_{n,k})$ enumerating the semistandard Young tableaux on $n$ cells with $k$ symbols. This allows us to show that the sequences $(i_{n,k})$ are not log-concave for some values of $n$, hence answering a conjecture due to F. Brenti.

M. Barnabei, F. Bonetti, M. Silimbani (2009). The descent statistic on involutions is not log-concave. EUROPEAN JOURNAL OF COMBINATORICS, 30, 11-16 [10.1016/j.ejc.2008.03.003].

The descent statistic on involutions is not log-concave

BARNABEI, MARILENA;BONETTI, FLAVIO;SILIMBANI, MATTEO
2009

Abstract

We establish a combinatorial connection between the sequence $(i_{n,k})$ counting the involutions on $n$ letters with $k$ descents and the sequence $(a_{n,k})$ enumerating the semistandard Young tableaux on $n$ cells with $k$ symbols. This allows us to show that the sequences $(i_{n,k})$ are not log-concave for some values of $n$, hence answering a conjecture due to F. Brenti.
2009
M. Barnabei, F. Bonetti, M. Silimbani (2009). The descent statistic on involutions is not log-concave. EUROPEAN JOURNAL OF COMBINATORICS, 30, 11-16 [10.1016/j.ejc.2008.03.003].
M. Barnabei; F. Bonetti; M. Silimbani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/62761
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact