This paper, which is meant to be a tribute to Minkowski's geometrical insight, rests on the idea that the basic observed symmetries of spacetime homogeneity and of isotropy of space, which are displayed by the spacetime manifold in the limiting situation in which the effects of gravity can be neglected, leads to a formulation of special relativity based on the appearance of two universal constants: a limiting speed and a cosmological constant which measures a residual curvature of the universe, which is not ascribable to the distribution of matter-energy. That these constants should exist is an outcome of the underlying symmetries and is confirmed by experiments and observations, which furnish their actual values. Specifically, it turns out on these foundations that the kinematical group of special relativity is the de Sitter group. On this basis, we develop at an elementary classical and, hopefully, sufficiently didactical level the main aspects of the theory of special relativity based on SO(1,4) (de Sitter relativity). As an application, we apply the formalism to an intrinsic formulation of point particle kinematics describing both inertial motion and particle collisions and decays.

S. Cacciatoti, V. Gorini, A. Kamenshchik (2008). Special Relativity in the 21st century. ANNALEN DER PHYSIK, 17, 728-766 [10.1002/andp.200810321].

Special Relativity in the 21st century

KAMENCHTCHIK, ALEXANDR
2008

Abstract

This paper, which is meant to be a tribute to Minkowski's geometrical insight, rests on the idea that the basic observed symmetries of spacetime homogeneity and of isotropy of space, which are displayed by the spacetime manifold in the limiting situation in which the effects of gravity can be neglected, leads to a formulation of special relativity based on the appearance of two universal constants: a limiting speed and a cosmological constant which measures a residual curvature of the universe, which is not ascribable to the distribution of matter-energy. That these constants should exist is an outcome of the underlying symmetries and is confirmed by experiments and observations, which furnish their actual values. Specifically, it turns out on these foundations that the kinematical group of special relativity is the de Sitter group. On this basis, we develop at an elementary classical and, hopefully, sufficiently didactical level the main aspects of the theory of special relativity based on SO(1,4) (de Sitter relativity). As an application, we apply the formalism to an intrinsic formulation of point particle kinematics describing both inertial motion and particle collisions and decays.
2008
S. Cacciatoti, V. Gorini, A. Kamenshchik (2008). Special Relativity in the 21st century. ANNALEN DER PHYSIK, 17, 728-766 [10.1002/andp.200810321].
S. Cacciatoti; V. Gorini; A. Kamenshchik
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/62642
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact