Cell invasiveness quantification is of paramount importance in cancer research and is often evaluated in vitro through scratch wound healing assays that determine the rate at which a population of cells fills a gap created in a confluent 2D culture. The quantification of the results of this experiment, however, lacks standardization and is often highly time consuming and user dependent. To overcome these limitations, we have developed AIM (Automatic Invasiveness Measure), a freely-available software tool for the automatic quantification of the cell-free region in scratch wound healing assays. This study will completely describe AIM and will show its equivalence to three analysis methods commonly used for the quantification of the scratch area and the measure of true wound extension. Furthermore, the analysis time and the dependency of the results of these techniques on the structure of the time course (total duration and number of points) will be studied. To the best of our knowledge, AIM is the first entirely-automated analysis method for scratch wound healing assays and represents a significant improvement of this technique both in terms of results' quality and reliability.
Cortesi, M., Pasini, A., Tesei, A., Giordano, E. (2017). AIM: A computational tool for the automatic quantification of scratch wound healing assays. APPLIED SCIENCES, 7(12), 1-12 [10.3390/app7121237].
AIM: A computational tool for the automatic quantification of scratch wound healing assays
Cortesi, Marilisa
;Pasini, Alice;Tesei, Anna;Giordano, Emanuele
2017
Abstract
Cell invasiveness quantification is of paramount importance in cancer research and is often evaluated in vitro through scratch wound healing assays that determine the rate at which a population of cells fills a gap created in a confluent 2D culture. The quantification of the results of this experiment, however, lacks standardization and is often highly time consuming and user dependent. To overcome these limitations, we have developed AIM (Automatic Invasiveness Measure), a freely-available software tool for the automatic quantification of the cell-free region in scratch wound healing assays. This study will completely describe AIM and will show its equivalence to three analysis methods commonly used for the quantification of the scratch area and the measure of true wound extension. Furthermore, the analysis time and the dependency of the results of these techniques on the structure of the time course (total duration and number of points) will be studied. To the best of our knowledge, AIM is the first entirely-automated analysis method for scratch wound healing assays and represents a significant improvement of this technique both in terms of results' quality and reliability.File | Dimensione | Formato | |
---|---|---|---|
2017Cortesi2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
19.97 MB
Formato
Adobe PDF
|
19.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.