Autism spectrum disorder (ASD) is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called "disease modules." In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

Mosca, E., Bersanelli, M., Gnocchi, M., Moscatelli, M., Castellani, G., Milanesi, L., et al. (2017). Network diffusion-based prioritization of autism risk genes identifies significantly connected gene modules. FRONTIERS IN GENETICS, 8(SEP), 129-139 [10.3389/fgene.2017.00129].

Network diffusion-based prioritization of autism risk genes identifies significantly connected gene modules

Bersanelli, Matteo
Formal Analysis
;
Castellani, Gastone
Methodology
;
2017

Abstract

Autism spectrum disorder (ASD) is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called "disease modules." In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.
2017
Mosca, E., Bersanelli, M., Gnocchi, M., Moscatelli, M., Castellani, G., Milanesi, L., et al. (2017). Network diffusion-based prioritization of autism risk genes identifies significantly connected gene modules. FRONTIERS IN GENETICS, 8(SEP), 129-139 [10.3389/fgene.2017.00129].
Mosca, Ettore*; Bersanelli, Matteo; Gnocchi, Matteo; Moscatelli, Marco; Castellani, Gastone; Milanesi, Luciano; Mezzelani, Alessandra
File in questo prodotto:
File Dimensione Formato  
fgene-08-00129.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/626004
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 17
social impact