Type 2 Diabetes (T2D) is a chronic disease associated with a number of micro- and macrovascular complications that increase the morbidity and mortality of patients. The risk of diabetic complications has a strong genetic component. To this end, we sought to evaluate the association of 40 single nucleotide polymorphisms (SNPs) in 21 candidate genes with T2D and its vascular complications in 503 T2D patients and 580 healthy controls. The genes were chosen because previously reported to be associated with T2D complications and/or with the aging process. We replicated the association of T2D risk with IGF2BPrs4402960 and detected novel associations withTERTrs2735940 and rs2736098. The addition of these SNPs to a model including traditional risk factors slightly improved risk prediction. After stratification of patients according to the presence/absence of vascular complications, we found significant associations of variants in theCAT,FTO, andUCP1genes with diabetic retinopathy and nephropathy. Additionally, a variant in theADIPOQgene was found associated with macrovascular complications. Notably, these genes are involved in some way in mitochondrial biology and reactive oxygen species regulation. Hence, our findings strongly suggest a potential link between mitochondrial oxidative homeostasis and individual predisposition to diabetic vascular complications.

Genes associated with Type 2 Diabetes and vascular complications

Garagnani, Paolo;Marasco, Elena;Pirazzini, Chiara;Giuliani, Cristina;Franceschi, Claudio;Olivieri, Fabiola;
2018

Abstract

Type 2 Diabetes (T2D) is a chronic disease associated with a number of micro- and macrovascular complications that increase the morbidity and mortality of patients. The risk of diabetic complications has a strong genetic component. To this end, we sought to evaluate the association of 40 single nucleotide polymorphisms (SNPs) in 21 candidate genes with T2D and its vascular complications in 503 T2D patients and 580 healthy controls. The genes were chosen because previously reported to be associated with T2D complications and/or with the aging process. We replicated the association of T2D risk with IGF2BPrs4402960 and detected novel associations withTERTrs2735940 and rs2736098. The addition of these SNPs to a model including traditional risk factors slightly improved risk prediction. After stratification of patients according to the presence/absence of vascular complications, we found significant associations of variants in theCAT,FTO, andUCP1genes with diabetic retinopathy and nephropathy. Additionally, a variant in theADIPOQgene was found associated with macrovascular complications. Notably, these genes are involved in some way in mitochondrial biology and reactive oxygen species regulation. Hence, our findings strongly suggest a potential link between mitochondrial oxidative homeostasis and individual predisposition to diabetic vascular complications.
Montesanto, Alberto; Bonfigli, Anna Rita; Crocco, Paolina; Garagnani, Paolo; De Luca, Maria; Boemi, Massimo; Marasco, Elena; Pirazzini, Chiara; Giuliani, Cristina; Franceschi, Claudio; Passarino, Giuseppe; Testa, Roberto; Olivieri, Fabiola; Rose, Giuseppina
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/624272
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact